

Funded by

The Grange 21 Western Avenue

Henniker, NH

October 22, 2023

Table of Contents

Introduction	3
Executive Summary	3-5
Envelope Values & Units	6
Historic Energy Use & Analysis	7-8
Floorplan Graphics	9-10
Description of ESM with IR Images	11-18
Inventory of Equipment & Devices	19-20
Interior Photos	21
Exterior Photos	22
Appendix	

Heat Transfer Basics	23
Innerglass Ordering Worksheet	24-27
Elite RHVAC Load Calc Reports	
Existing Conditions	28-33
Retrofit	34-39
Lennox Furnace	40-42

Introduction

This Energy Audit has been funded by Eversource. Funds may, or may not, also be available to help reduce cost for eligible Energy Saving Measures (ESM) including weatherization efforts and equipment upgrades.

The purpose of an energy audit is to identify energy saving measures (ESM) in a building. Computer simulated energy models are developed to estimate energy consumption based on the local climate conditions, physical dimensions and characteristics of a building, mechanical systems, presumed lighting, equipment, and occupancy patterns, in addition to a number of other variables.

With the building modeled in existing conditions, energy savings can be estimated for improvements to the thermal envelope and/or more efficient mechanical systems. The cost of those measures can then be analyzed in terms of predicted energy saved and savings potential from converting to different sources of energy. The primary objective is to evaluate the level of investment warranted by energy and dollars saved from those specific measures.

This audit has been prepared with the best of intentions to assist the Town of Henniker make informed decisions regarding energy saving improvements in keeping with long term goals for the property. We do not make any warranty, expressed or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed.

Executive Summary

The Grange is an historic wood framed structure with a meeting room, office, and small restrooms on the first floor. The basement is unfinished, but fully used as a food pantry with refrigeration and dry goods storage.

As shown in the historic energy usage on page 7, the cost to heat the building in 2022 was \$1765 for propane and an estimated \$212 for electric resistance heating in the office. A portable air conditioner in the small office is the only cooling available at this time. While there are definitely opportunities to improve the thermal envelope to conserve heat, the costs for substantial improvements cannot be easily justified when the annual heating costs are relatively low, ie under \$2000 at current energy prices.

Therefore, recommended ESM have been organized into three tiers, representing different levels of investments and benefits. Tier one includes four ESM with an estimated total cost of \$1,820 and estimated annual savings of \$166 for a simple payback of 11 years. Tiers two and three reflect a more comprehensive upgrade to the thermal envelope, at an total estimated cost of \$22,232 (for all three tiers) and annual savings of \$1040 from existing equipment and current energy prices. A cost/savings analysis of all three is on the next page.

The predicted savings from this more comprehensive approach does not appear to be financially appealing at today's energy prices, but it reduces the heating loads enough to make converting to electric heat pumps more affordable with increased annual savings and offering summer cooling. It also has a more dramatic reduction of carbon emissions, improves comfort, and the ability for the building to 'coast' through power outages while conserving heat.

Other recommendations from this study include:

- Install new, Energy Star, bath fans on timers and vent to the outside to eliminate the risk of condensation in attic
- Convert all lighting (14 fixtures with 32 tubes) to LED,
- Replace a gasket on one of the freezers, defrost all of them, and plan on replacing oldest refrigeration units in the near term.

Summary of Energy Saving Envelope Measures

The recommended ESM are described in more detail later in this report.

The chart below summarizes the cost of each ESM in the fairly cost effective Tier One, estimated annual dollar savings, a simple payback in years, and return on investment (ROI) of each measure based on the service life of the improvement.

An investment of an estimated \$1,820 is predicted to save at least \$166 in energy costs at the three year average propane cost per gallon, and \$0.16 per kWh. This would result in a simple payback within 11 years. Since ESM continue to save energy for the life of each measure, this also results in a minimum annual return on investment (ROI) of 2.8% over each of the next 25 years. Again, the savings are based on recent average energy prices. If (when) prices increase, so too will the ROI.

Tier One	Cost of Measure	Annual Savings	Simple Payback Years	Life of Measure	Invest- ment Gain	ROI	Annual ROI
Replace Thermostat	\$ 70	n/a					
Weatherstrip Doors	\$165	\$28	5.9	10	\$115	69.7%	5.4%
Air Seal Ceiling	\$650	\$63	10.3	25	\$925	142.3%	3.6%
Rim Joists	\$1,005	\$75	13.4	25	\$870	86.6%	2.5%
	\$1,820	\$166	11.0	22	\$1,795	100.7%	2.8%

This next chart presents the same Tier One ESM with resulting annual energy savings from each implemented measure and the annual reduction of CO2 emissions. Potential Eversource incentives are based on energy saved for the cost of the measures. Contact your Eversource representative, Jack Paloulek, to determine if the project is eligible for incentives. jack.paloucek@eversource.com

Tier One	Cost of Measure		kWh Saved	Site Energy Reduction MMBTU	Source Energy Reduction	Tons CO2 Reductions Annually
Replace Thermostat	\$ 70					
Weatherstrip Doors	\$165	16		1.5	1.7	0.1
Air Seal Ceiling	\$650	37	162	3.9	5.7	0.3
Rim Joists	\$1,005	44	45	4.2	5.1	0.3
	\$1,820	98	207	9.6	12.6	0.7

Note: Replacing the main room thermostat with a programmable unit, with auto set back, will likely save measurable heating energy. But saving estimates are not included because they would depend on how the dial thermostats are operated now—which is not available. Programming for nighttime set back with an auto set back feature would allow people to turn the thermostats up as needed, but then automatically return to nighttime setbacks, without having to remember to do so.

"Going Deeper"

The chart below summarizes the cost of each ESM in a Tier Two and Tier Three which includes insulating the above grade walls, estimated annual dollar savings, a simple payback in years, and return on investment (ROI) of each measure based on the service life of the improvement.

In this case, pursuing a "deeper" energy retrofit by investing a total of \$22,232 (incudes Tier One costs) is predicted to save \$1,040 in annual energy costs. This would result in a simple payback of over 20 years, but a positive annual ROI each of those years of just under 1%. Again, this is based on stagnant energy prices. While price increases are likely, no one has a crystal ball on future energy prices, so the financial analysis is likely conservative. Costs are estimated and would need a contractor proposal for actual costs.

Tier Two	Cost of Measure	Annual Savings	Simple Payback Years	Life of Measure	Invest- ment Gain	ROI	Annual ROI
Insulate							
Foundation Walls	\$2,970						
Innerglass on Windows	\$3,960						
Ceiling Insulation	\$2 740						
Upgrade to R50	\$3,749						
Total Tier 2	\$10,679	\$525	20.3	25	\$2,447	22.9%	0.8%
DP AG Walls	\$9,734	\$349	27.9	25	-\$1,009	-10.4%	-0.4%
Totals For All Three Tiers	\$22,232	\$1,040	21.4	25	\$3,768	17.0%	0.6%

This next chart presents the same ESM with resulting annual energy savings from each implemented measure and the annual reduction of CO2 emissions. Potential Eversource incentives are based on energy saved for the cost of the measures.

Tier Two	Cost of Measure	LP Gallons Saved	kWh Saved	Site Energy Reduction MMBTU	Source Energy Reduction MMBTU	Tons CO2 Reductions Annually
Total Tier One	\$1820	98	207	9.6	12.6	.7
Total Tier Two	\$10,679	309		28.2	32.4	1.9
Insulate AG Walls	\$9,734	205	312	19.8	25.1	1.4
Total All ESM	\$22,232	612	519	57.6	70.1	4.0

Based on the articulated interest in converting to air source heat pumps for more efficient heating and adding summer cooling, the chart to the right shows the reductions in heating loads for each ESM group. Numbers indicate the heat pump capacity in tons for each condition, also indicating potential first cost reductions.

Assessed Values for The Grange and Other Model Inputs

The thermal envelope is the assembly of materials which form the barrier between inside conditioned space and outdoor weather and climate. Its ability to conserve heat and manage moisture determines, primarily, the heating load or demand of a building. Continuity and thickness of insulation, in direct contact with air barrier, is key to an effective thermal barrier.

Square Feet Area (whole)	3090	
Volume (ft3) (whole)	23,636	
Design Temps	Outdoor Dry	Indoor Dry
Winter	2	70
Summer	87	75
Reference City	Concord NH	

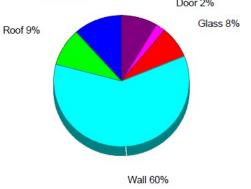
Summary reports for load calculations of the existing and retrofitted condition has been included at the end of this study. Below is a summary of values for existing and improved envelope components.

Envelope Component	Surface Area FT2	Assessed Effective R-Value	U- Factor	Improved U-factor	Improvement
DH Stained Glass Windows	192	1.75 1.78	0.57 0.56	0.37	Weather-Strip and Interior glaz-
Exterior Entry Doors Wood Framed Walls	59 1952	6	0.167	n/a 0.083	Weather-Strip Exterior Insulation
Rim Joists	165	2 2	0.5 0.5	0.056	Three inches SPF
Foundation Walls to 2' below grade Foundation Walls to Floor	620 160	8	0.13	0.083	2" FF Thermax OR
South Foundation Flat Ceiling	61 1470	1.7 16	0.61 0.063	.083 0.02	Air Seal and add 12" cellulose
Slopes and Flat above Storage	310	10	0.100	0.02	Dense Pack Slopes and Blow in
Floor Over basement	1350	2.7	0.37		Bring foundation walls into ther-
Volume: 12,000 ft3 Above Grade		Exist		Improved	
CFM Air Leakage Winter/Summer		110/59		75 Floor	12% Infiltration 9%

Floor 12%

Door 2%

Other formulas used in this analysis:


Propane: 91,300 Btu per gallon for site energy Source energy: 104,995 Btu per gallon (1.15xSite)

Electric: 3412 Btu per kWh site energy. Source energy: 11,361 Btu per kWh

CO2 Emissions:

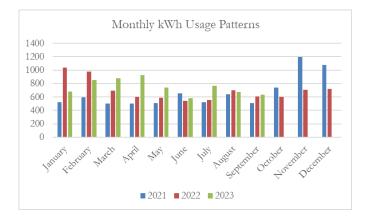
Propane: 12.35 lbs per gallon

Electric: CO2 lbs = kWh X .89

Heat loss by the thermal envelope component

Historic Energy Use Analysis

The energy analysis below is based on an average of the energy data provided for 2021 and 2022.


Energy	Units	Site Btus	Source Btus	\$Cost
Electric kWh	8324	28,401,488	94,568,964	\$1,253
Propane	1039	94,860,700	109,089,805	\$1,765
Totals		123,262,188	203,658,769	\$3,018
EUI KBtu/FT2	1323	93.2	153.9	\$2.28
EUI with basement	2646	46.6	77.0	\$1.14

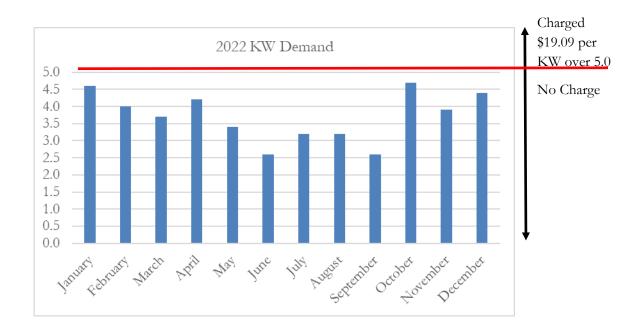
The Energy Utilization Index (EUI) offers a simple snapshot analysis of a building's energy use by looking at total amount of energy input (converted to Btu's) divided by the floor area of conditioned space. "Site Energy" refers to units of energy delivered to a site. Source energy includes transmission and some allowance for off site generation and other considerations.

Based on the information provided the Site EUI for 2021 and 2022 averaged 46.6 KBtu/ft2 for the whole building. Source EUI is 77.7 KBtu/ft2, with a cost per square foot of \$1.14 per ft2 based on current energy prices. Since the per unit cost for energy can vary greatly over time, converting all forms of energy to Btus is a more useful way of looking at a building's energy demands and potential reductions from energy saving measures.

An EUI of 46.6 is not considered very high, even for a building without central air conditioning, but it is notable that only the first floor is 'intentionally heated'. The basement is heated through the ceiling (conditioned floor above), from uninsulated ducts, and from heat generated from the refrigeration units.

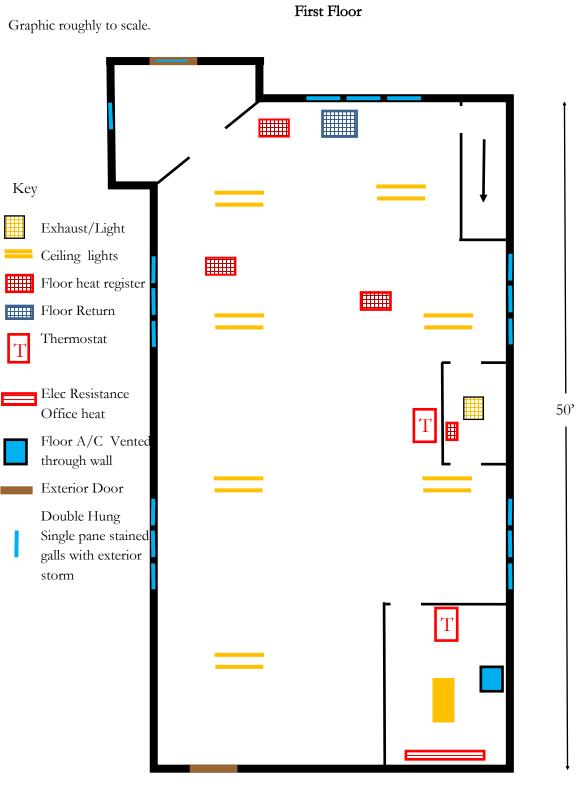
Monthly patterns of electric consumption can sometimes tell a useful story, though assumptions are never as useful as hard facts. Still, it is likely that the peak consumption pattern in the winter is due to heating the office with electric resistance (ER) baseboard. While ER is technically more efficient than even the condensing furnace, it is also by far the most expensive way to heat a space. Electric heat pumps are two to over four times more efficient than ER, (or any other existing technology), so can compete with fossil fuels on a cost per million Btu basis. However, at the 2023/2024 contracted price of \$1.439 per gallon of propane, the existing furnace is a more cost effective system. The financial advantage of converting to heat pumps is that it offers the option to offset with on-site generation of clean, renewable, and "free" solar energy.

KW Demand and the Cost of Supply


The KW Demand is determined each month by the peak call for power during any 30 minute window within a billing cycle. There were no Demand Charges in 2022 since the peak demand never exceeded 5.0 in any of the 12 months.

While its not a concern now, demand for power would increase when converting to electric heat pumps though could be mitigated by not using nighttime set backs. Heat pumps operate most efficiently when left at a stable thermostat setting.

Reducing electric usage saves energy and monthly costs in both the supply side (actual electricity used) and the delivery side (the very real transmission costs of delivering kWh to the meter, maintaining lines, etc).


Lowering peak demand on the regional grid plays a critical part in reducing the need to build more generation plants. It may be impacted by a reduction in kWh consumption, but is mostly determined by time and the appliance used. Customers are allowed a peak use of 5.0KW each month before incurring charges.

A good explanation about Demand Charges can be found at <u>Making Sense of Demand Charges</u>: <u>What Are They and How</u> <u>Do They Work? - Renewable Energy World</u>

Energy Audit

27'

9

Basement

Graphic only roughly to scale.

Energy Audit

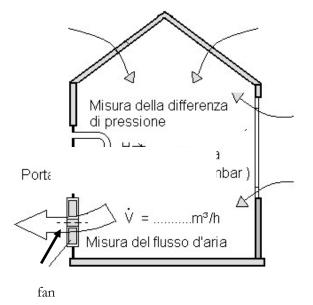
Description of Energy Saving Measures

Replacing the main room thermostat with a programmable unit, with auto set back, will likely save measurable heating energy. But saving estimates are not included because they would depend on how the dial thermostats are operated now—which is not available. Programming for nighttime set back with an auto set back feature would allow people to turn the thermostats up as needed, but then automatically return to nighttime setbacks, without having to remember to do so.

One good option: Honeywell Home RTH6580 W-Fi 7-Day Programmable Thermostat \$70

Air Sealing

The objective of this measure is to reduce uncontrolled air leakage. Weather-stripping exterior doors, windows, and the hatch to the attic, are all recommended steps.


But the recommendation is also to hire an insulation contractor who uses a blower door assembly to slightly depressurize the building in order to locate—and seal—air leakage sites.

NOTE: The building should not be put under pressure if the ceiling tiles are deemed to be asbestos!

A blower door consists of a large fan, capable of moving 6000 cubic feet of air per minute (CFM), an adjustable door frame, and a nylon skirt to seal off the exterior door, much like how a skirt on a kayak keeps a paddler dry below the waist.

BD's are often used to measure how much is pulled through cracks and gaps at a standardized pressure differential of 50pascals. Actual air leakage under natural conditions can be (sort of) guesstimated from that measurement, but many argue, including this consultant, that the best reason to put the building under pressure is to locate leakage sites.

Air Sealing: Weather-stripping Doors

Thermographic (aka Infra Red or IR) images depict differences in surface temperatures. Darker colors indicate cooler surfaces than brighter colors. Dark "blobs" or streaks can indicate cold air leaking into the building on a cold day, or washing through low density insulation such as fiberglass.

Air leakage around the three exterior doors offer a cost effective opportunity to reduce air filtration though installing professional quality weather stripping.

Interior Glazing Units

Exterior storm windows do reduce the amount of heat loss through windows to a certain extent, by adding an air space between the single pane of glass and storm. Importantly, they also serve to protect historic window frames and glass. But they do not stop air infiltration because they need 'weep holes' to allow drainage of condensation that forms.

As restoring historic wood windows becomes increasingly popular, many companies now offer a variety of interior options which are less expensive than full replacements and often as, or more, effective at reducing heat loss.

Interior glazing panels are a very effective option. They can be custom made with wood for \$800-\$1200, OR a non wood unit can be custom ordered on line and easily installed for less than \$300. In this case, a compression fitting unit is estimated to cost \$264 per window.

They can be single units and easily removed, or double hung, and left in place.

The statements below were copied in part from stormwindows.com and reference Innerglass Windows specifically, though many of the statements describe any quality interior glazing panel. Advantages include:

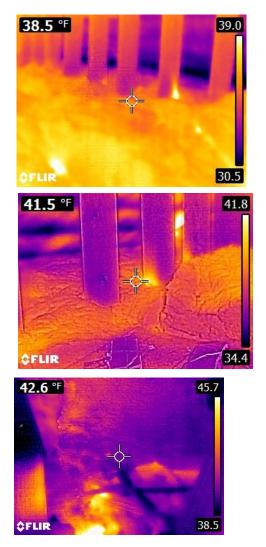
- Uses a concealed stainless steel springing system that requires no all-around track. It conforms to the window opening, automatically compensating for most out of square conditions.
- Custom made to your window dimensions, we can fit any window, no matter how crooked!
- Significantly more effective at insulating your home and lowering your heating and cooling bills than traditional exterior storm windows.
- Much tighter than exterior storms, because outside storm windows must be ventilated (you know, the weep holes) to get rid of the condensation that has already happened.
- So tight it provides a vapor barrier on the warm side that stops condensation in the first place.

Innerglass Window Systems pioneered the use of high performance Low-E glass in our interior storm windows. Low-E glass doubles the R value of regular glass making you warmer in the winter and cooler in the summer. It also cuts out 2/3 of the ultra-violet rays that damage your rugs and furniture.

https://stormwindows.com/index.php/storm-windows-how-to-order/

Innerglass	U.I / FT2	Per	Per Unit	# Units	Cost
Compression Unit	96	\$2.75	\$264.00	15	\$3,960

Ceiling Plane

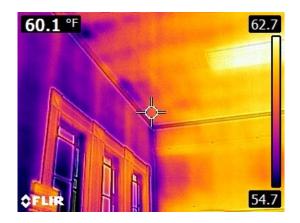

Stairs lead up to a finished storage area with an access hatch to above the ceiling in the wall. It is apparent that the room below was (presumably a Church) and open to a vaulted roof as remnants of plaster ceiling remain at the roof plane. The new ceiling structure has an old layer of fiberglass with facing disintegrated and a newer layer of 10" fiberglass batt laid on top. In all, there is a lot of insulation material, but much of it in poor condition and not in contact with an air barrier, thus diminishing its thermal performance.

ESM two calls for 'surgical air sealing' of gaps and penetrations as located from using a blower door. Ideally, ESM #7

would be approved at the same time so that during the air sealing, degraded insulation could be removed, good material positioned, and an additional 12" cellulose blown on top. Note: integrity of ceiling tiles should be assessed to carry the extra weight.



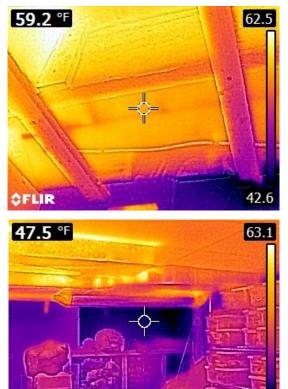
Ceiling Plane


Approximately 3' wall inside the storage attic. Note the appearance of insulation above the lower ceiling, that does not extend up the wall.

The middle image was taken from inside the storage attic, below the hatch, with the image on the right taken from inside the room below.

Basement and Foundation Walls

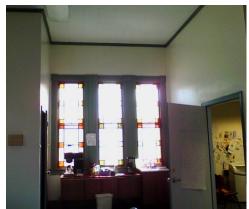
Though the basement doesn't (appear to) have a thermostat to be actively heated, it is heated by three sources:

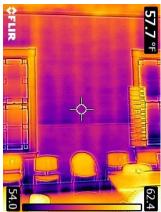

- 1. Heat conducting from the conditioned floor above
- 2. "Distribution losses" through the uninsulated metal ductwork
- 3. Heat expelled from the seven refrigeration units

To conserve that heat inside the building, ESM #4 focuses on insulating the rim and band joists and making a continuous air seal to the top of the foundation. ESM#II-5 suggests investing in insulating the block walls, at least the top 3-4', with either 2" foil faced foam board (Thermax has a 15 minute flame rating) or spraying closed cell foam followed by an intumescent paint to meet the fire code.

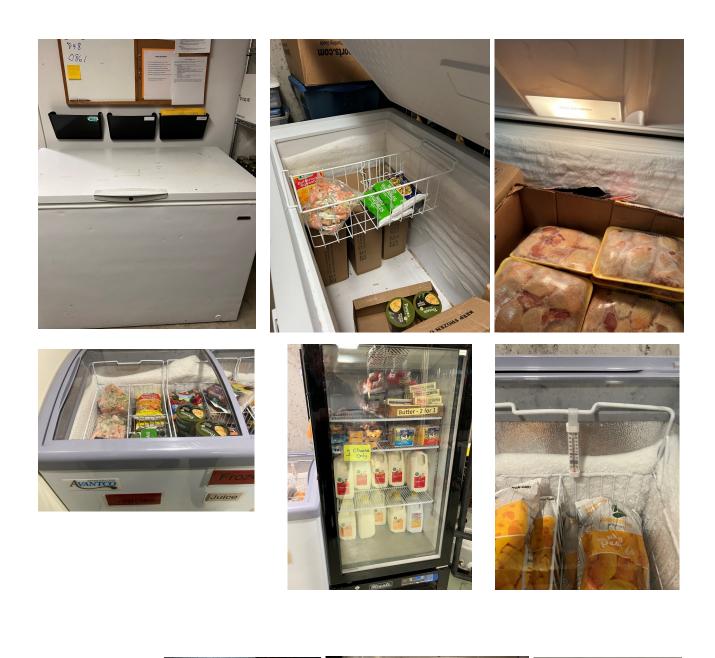
Insulating the whole foundation wall—from the rim joists down to the floor—is ideal, but in terms of "bang for the buck", the greatest heat loss occurs down to about two feet below grade, at which point the earth offers insulating value while also staying above ambient air temperatures during the coldest hours of winter.

But the other advantage to insulating the walls with a vapor impermeable material is to reduce moisture migration and therefore reduce hours needing dehumidification.


Above Grade Framed Walls


The brighter/lighter vertical lines shows that the surfaces to the inside of the wood stud framing is warmer than the cavity (stud bay) on either side, indicating that the wall cavities do not have insulation in them because the heat is moving to the outside more rapidly in between the studs. The Grange's walls account for an estimated 60% of all heat loss to the outside, mostly through the above grade framed walls, and the colder surfaces can be a source of discomfort as body heat radiates to both cold glass and walls.

The recommendation is to insulate the cavities by removing a clapboard on the outside, drilling a 2" hole in the wood sheathing, and blowing cellulose into each four inch cavity bay before sealing the hole and re-installing the clapboard.



Equipment Inventory

Appliance	Brand	Model	Serial	Manufact. Date		Efficiency	Refrigerant
First Floor Portable Air Conditioner	Maytag	M6P09S2A*B	MR 773013 357W	Ũ	9000 Btu	9.5 EER	R-22
Paper Shredder	Staples						
Copier	HP						
Small Fridge							
Coffee Makers (2)	Bunn						
Restroom Exhaust Fans							
Basement							
SS Refrigerator	Intertek	R23-S	R23S 19060031		7.5 Amps		R-290
Refrigerator	Electrolux	FKCH17F7HWD	WB34280576	Oct 2013	5.0 Amps		134-A
	Sears	253.1654211	WB94237194	Oct 2009	5.0 Amps		134-A
GlassTop Freezer	Avantco						
B Series Glass Door Fridge Miagali Ind.	Miagali Ind.	C-10RM-HC	HC00318101600920004	Oct 2018 2	2.1 A 250W		R-290
Commerical Freezer	Sears	253.145921	WB53224952	Aug 2005	5.0 A		134-A
	Kelvinator	KCCf170WH	738231 0292	、、	1.9 A		R-290
							0110
Dehumiditier	Aire	PAD / 0) CIUZ (BIM	0.9 A /20 W	/Upints/day	K 410
Electric Water Heater	State Ind.	PV 20 10MSB KZ J95924589	J95924589		19.9 gallons 1650	0	
Copier							
Furnace- Single Stage	Lennox	G26Q3/4	5802L 45012	Nov 2002 (Output 125,000 91% AFUE	91% AFUE	

Interior Photos

To basement attic

Restroom

Office

Exterior Photos

Energy Audit

North facing

West facing

East facing

A shed roof south facing addition provides covered but unconditioned (exterior to the thermal envelope) stair access to the basement and main floor.

The Basics of Heat Transfer in a Building

Heat moves in three basic ways in a building: Conduction, convection, and radiation.

Heat **conducts** to coolth or cold in any direction and through physical contact of materials. Insulation can slow the rate of heat loss to the outside. The rate at which it moves is determined by the type and thickness of material and the temperature difference between inside and outside. Compare holding a ceramic mug of hot water vs a glass of hot water, vs a glass of cold water. The skin of your hand will be heated—or cooled—based on the conductivity of the mug, glass, and the temperature difference of the water and your hand.

In a building in our climate, heat moves, or 'is lost' to the outside as it moves from inside heated space to the colder outside through an assembly of materials. For the walls, the assembly may consist of plaster or sheet-rock, brick, or wood framing with insulation in cavities (or not), exterior board sheathing, wood clapboards, or perhaps a thin layer of insulation and vinyl siding. The rate of heat loss varies with the difference between the inside temperature and outside temperature. That is why setting the thermostat back to 55 degrees when the building is unoccupied saves energy; because the rate of heat loss is slowed.

Heat can also be transferred through air or water by **convection**. While heat moves to cold via conduction, warmer air rises because it is lighter, or less dense, than cooler air. This means that insulation can only work well if it doesn't allow air to pass through it. The other way to say it is: Insulation needs to be in contact with an air barrier on all sides to perform as expected. Weatherstripping around doors and windows, for example, can stop cold air infiltration which, when warmed, rises to the ceiling and exfiltrates through any cracks or gaps in the ceiling material.

Insulation is usually described by its R-value, or resistance to allow heat transfer. But R-value doesn't tell the whole story because it only refers to conductive heat loss and doesn't consider convection. Manufactures of insulation test their products in a laboratory by placing it, fully lofted, in a perfectly sealed box, and measure the rate that heat moves from one side to the other to determine what "R-Value" to stamp on the product to be sold. If its not installed in exactly the same way, that R-value has very little meaning.

The third way heat moves is by **radiation**. This happens through space and from a warmer source to cooler surface in visual contact. Think of feeling the warmth of the sun and the immediate difference when a cloud blocks it. The sun still warms the earth surfaces and surrounding air, but direct radiation can be blocked—or shaded. Same thing with a wood stove. A hot stove warms air, but its greatest impact is by radiation which is only felt when one is in visible contact. And the further away, the less heat is felt. Its often tempting to replace windows because we feel so cold when next to them! That's because our body heat radiates to the cold surface. Insulated shades or quilts stops that radiative loss (but also eliminates view and daylight). Interior glazing panels can make a big difference for single pane windows because the air space raises the surface temperature of the inside glass.

In reality, all three mechanisms happen at the same time, though one usually dominates the others in terms of how much heat is moved.

The role of heating equipment is to replace the heat that is lost through the envelope. This is described or measured as replacing BTU per hour (BTU/hr). If the heating system (electric baseboard, oil or propane furnace or boiler, etc...) creates or moves more heat (BTU) in an hour than in lost to the outside, the system is considered "over-sized" which can waste energy unnecessarily. On the other hand, if the system cannot generate or move enough heat to replace what is lost in any given hour, the system is "undersized" and will not be able to maintain warm enough inside temperatures for human comfort. So correct sizing is important!

Innerglass Window Systems LLC

15 Herman Drive Simsbury, Ct, 06070 800-743-6207 860-651-3951 Fax 860-651-4789

Price and Order Form

We price the Innerglass Window by the United Inch. The formula is Width + Height = U.I.

1. Please round to the nearest whole inch, then <u>add</u> the window width and height and write it on the sheet

2. Please write the color, window type code, and glazing code in the box on the measurement worksheet.

3. Square feet for glazing are Width x Height (in inches) divide by 144 to get Ft² and round up.

Storm

Window Type	Code	# Of Windows	United Inches	X Price Per U.I.	=	Price
Compression	(CP)			X \$3.25	=	\$
Double Hung	(DH)			X \$3.55	=	\$
Double Slider	(SL)			X \$3.55	=	\$
Triple Slider	(TL)			X \$4.15	=	\$
Surface Mount	(SM)			X \$3.25	=	\$
				X	=	\$
				X	=	\$
Glazing	Code		Square Feet	X Price Per Ft ²		Price
1/8 " Clear Glass	(DS)	Standard		X \$3.00	=	\$
1/8" Low E Glass	(LE)	High Performance		X \$6.00	=	\$
1/8' Acrylic	(AC)			X \$7.00	=	\$
Other				Х	=	\$
Call for price			Connecticut Reside	ents add 6.35% Tax	=	\$
Compression Wi Energy Star and		Low E glass is s for Tax Credits!				
Please call for a	a truck	freight estimate.		Shipping Tota	I	\$
		_		Total Sale	•	\$

You can pick up at the factory and avoid shipping charges.

Terms: 50% Deposit with your order. 50% paid when your windows are ready to ship. We must have full payment in order to ship your windows. We will send an order acknowledgment and the estimated ship date when we receive your order. We accept checks, money orders, VISA, MASTERCARD, AMERICAN EXPRESS and DISCOVER CARD.

ACCEPTANCE- The above prices, specifications and conditions are satisfactory, and are hereby accepted. I agree that I am responsible for correctly measuring my window openings, and that Innerglass Window Systems will not be responsible for any errors in the dimensions I have given them.

If Innerglass Window Systems measures we are responsible. Because these are custom sized, no refunds or returns are possible. Payment will be made as outlined above. When delivery or pickup of completed order is delayed by customer, balance is due. When delay is more than 30 days, storage charges may accrue.

Order Date	Signature	Name	
Address			StateZip
Home Phone		Work or Cell	
Email address_			
Credit Card #		Expiration Date	Billing Zip
Revision 15 eff. 6/1	5/2023		

Innerglass Window Systems Measuring Guidelines

Tools needed

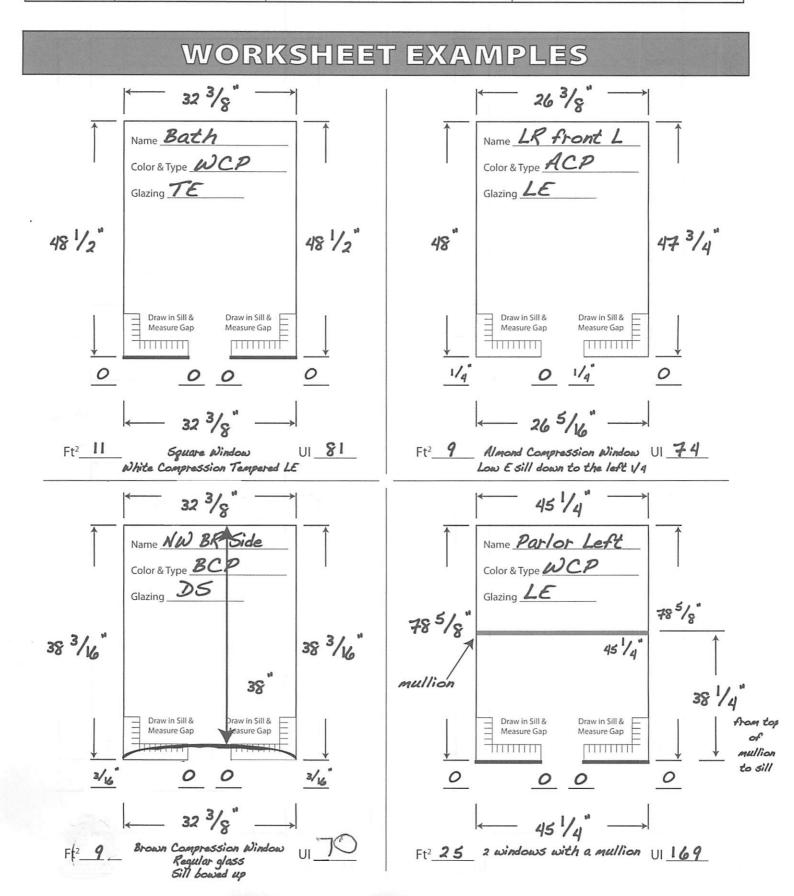
- 3" Case Dimension Locking tape measure
- 16"x 24" framing square (to check for out of square)
- 6" or 12" ruler
- Window Worksheet to record measurements

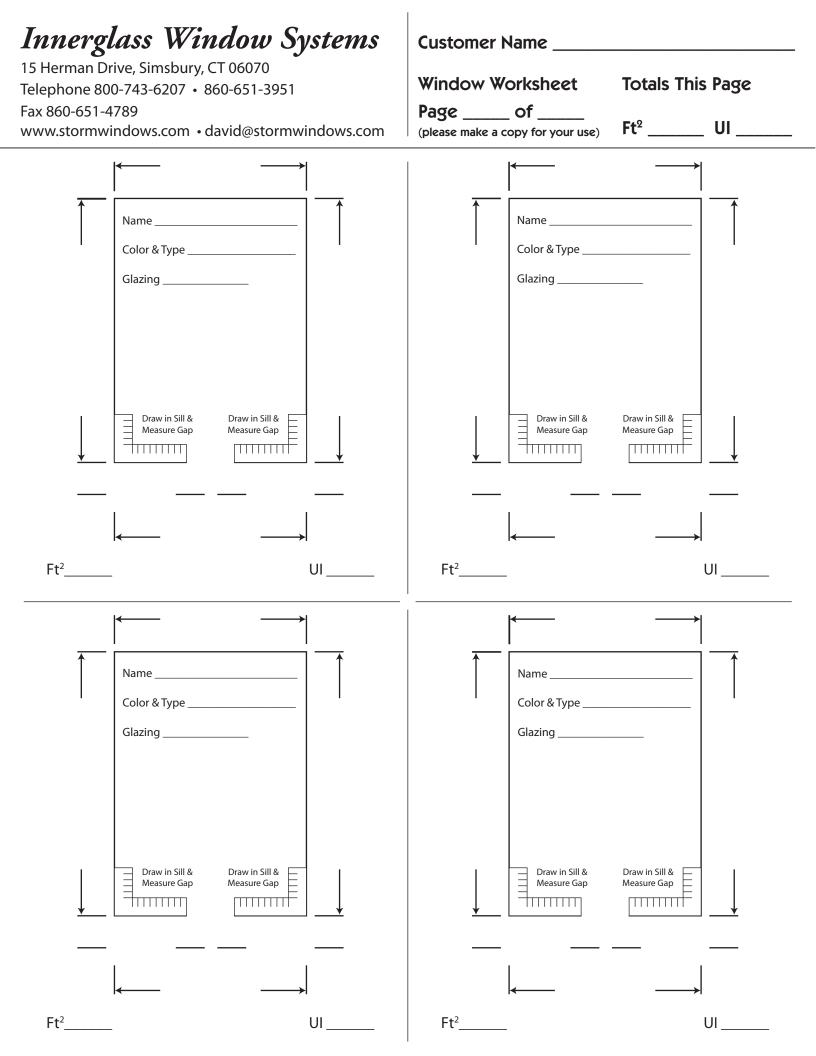
1. Measure all 4 sides to 1/16" and record the actual measurement. Do not average. Don't bend the tape into the corner. Instead add the tape case dimension to your measurement. Measure exactly where the window will be mounted.

2. The Innerglass Compression-Fit window needs 3/4 "depth in the window opening for mounting, 5/8" is possible but call us. The double hung and horizontal sliding interior storms need 1 1/8" depth in the window opening. Watch for obstructions such as window hardware. Screw heads and recessed pockets for the window stops are generally not a problem if they don't stick out more than 1/16".

3. To check for out of square, notice the framing squares at the left and right bottom corners and the 2 lines under each framing square where you record the gap on the worksheet. Start tight to the left side and slide the 24" side down until it touches the sill at either the corner or the end. The framing square is always held tight against the side so that any gap will show up at the bottom. If the window is square at the bottom you would record a "0" at each of the 4 lines under the framing squares. If the gap is 1/16 or less it is effectively square. For example: If a window sags down to the right the gap measurements could be 0 $\frac{1}{4}$, 0 $\frac{1}{4}$. Place the framing square against the right side of window and repeat the procedure. Think of this as a snapshot of each bottom corner. In reality they overlap but for clarity they are separated and are not to scale. Next lay the 24" side of the framing square on the sill to check if the sill is bowed up or down, if so give us a center vertical measurement and draw an arc showing the bow.

4. Innerglass Windows will accommodate 3/16" vertical and ½" horizontal play. On deep openings measure where you want the window to be and measure the opening at the wall to check that is does not get smaller than these tolerances. If the opening is smaller or the bottom of the opening is obstructed call us.


Mullions for dividing up large windows


5. If you are measuring for a double hung storm or are doing a large opening as separate upper & lower windows with a mullion, measure from the sill to the top of the meeting rail. (Where the dust collects.) This is where the top of the mullion will be. A window opening may be done as one window or two windows with a mullion. Generally double hung windows taller than 72" inches should be done as 2 windows with a horizontal mullion. Measure the length for the mullion where it is to be installed. The dimensions of the vinyl covered wood vertical mullions are 1 5/8" deep x 1 1/8" wide. The vinyl color will match the window. The horizontal mullion is $\frac{3}{4}$ " thick x 1" wide. Measure the width and height of the entire opening.

Do not make allowance for the mullion size. We will do that. For pricing purposes, remember that it is one opening but TWO windows, so the width & height of each needs to be added together to come up with the united inch measurement.

Maximum size for double strength glass is 25 sq ft or 125 united inches. Larger than that 3/16" or 1/4" laminated or tempered glass will be used at extra cost. Within 12" of a door or 18" of the floor, Acrylic or tempered glass must be used at extra cost. Please call us at 860-651-3951 or 800-743-6207 with any questions.

Code Ke	V		
Color	Window Type	Glazing	United Inches = Width + Height
A = Almond B = Brown W = White	CP = Compression DH = Double Hung SL = Sliding TL = Triple Slider SCR = Exterior Screen	DS = Regular LE = Low E LA = Laminated Glass AC = Acrylic TG = Tempered Glass TE = Tempered Low E	 Round to the nearest whole number before adding width and height 1/2" and over, round up Under 1/2", round down

Henniker Grange EXISTING With Floor HVAC Load Calculations

for

Town Of Henniker

Henniker NH 03242

Prepared By:

Margaret Dillon S.E.E.D.S.

603-532-8979 Saturday, October 21, 2023

Rhvac is an ACCA approved Manual J, D and S computer program. Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

Rhvac - Residential & Light Commercial HVAC Loads
S.E.E.D.S.
Jaffrey, NH 03452

Elite Software Development, Inc. Henniker Grange EXISTING With Floor

Page 2

Project Report

Појсогнорон							
General Project Informa	tion						
Project Title:	Hen	niker Grange	EXISTING V	Nith Floor			
Project Date:		sday, Octobe					
Client Name:		n Of Hennike					
Client City:		niker NH 032					
Company Name:	-	.E.D.S.	.72				
Company Representativ		garet Dillon					
Company Phone:	inar	-532-8979					
Company E-Mail Addres			oint not				
		llon@myfairpo	Sint.net				
Design Data							
Reference City:				d AP, New Ha			
Building Orientation:				oor faces Nort	h		
Daily Temperature Rang	je:		High				
Latitude:			43 Degrees	3			
Elevation:		3	342 ft.				
Altitude Factor:		0.9	988				
	.						
		Outdoor	Outdoor	Indoor		Grains	
	<u>Dry Bulb</u>	Wet Bulb	<u>Rel.Hum</u>	<u>Rel.Hum</u>	Dry Bulb	<u>Difference</u>	
Winter:	-2	-2.6	n/a	n/a	70	n/a	
Summer:	87	70	43%	50%	75	19	
Check Figures							
Total Building Supply Cl	FM:		2,000	CFM P	er Square ft.	:	0.647
Square ft. of Room Area			3,090		ft. Per Ton:		694
Volume (ft ³):			000***	• ••••••			
***Indicated volume is b	ased on cu						
Building Loads			, volanio.				
Total Heating Required	Including V	entilation Air	. 100	130 Btuh	100.130	MBH	
Total Sensible Gain:	including v	critication / ar.		448 Btuh	81		
Total Latent Gain:				977 Btuh	19		
Total Cooling Required		ontilation Air		425 Btuh			n Sensible + Latent)
Total Cooling Required	including v	entilation Air.		+20 Diun	4.40		
Notes							
Rhvac is an ACCA appr	oved Mani	al I D and S		rogram			
Calculations are perform					d ACCA Ma	nual D	
All computed results are							
Be sure to select a unit t						nufacturer's perf	ormance data at
your design conditions.					9 · · · · · · · ·		
Ũ							

Henniker Grange EXISTING With Floor Page 3

Miscellaneous Report

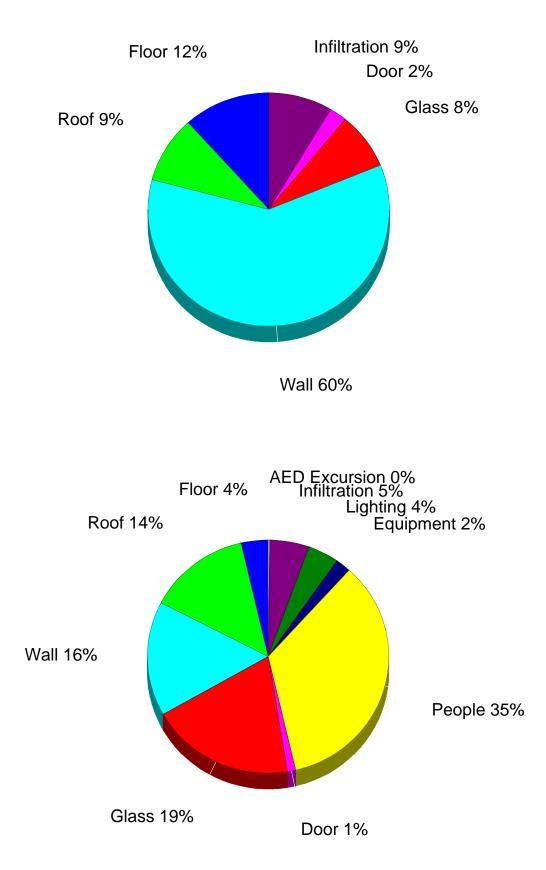
Input DataDry BulbWet BulbRel.HumRel.HumDry BulbDifferenceWinter:-2-2.680%n/a70n/a	wildocharicoud ric	5011								
Winter: -2 -2.6 80% n/a 70 n/a Summer: 87 70 43% 50% 75 18.66 Duct Sizing Inputs Main Trunk Runouts Calculate: Yes Yes Yes Calculate: Yes	System 1 Existing		Outdoor	Outdoor	Outo	door	Ind	oor	Indoor	Grains
Summer: 87 70 43% 50% 75 18.65 Duct Sizing Inputs Main Trunk Runouts Calculate: Yes Yes Yes Use Schedule: Yes Yes Yes Roughness Factor: 0.00300 0.01000 0.01000 Pressure Drop: 0.1000 in.wg./100 ft. 0.1000 in.wg./100 ft. Minimum Velocity: 0 ft./min Maximum Velocity: 90 ft./min 750 ft./min 750 ft./min Maximum Velocity: 0 in. Maximum Height: 0 in. 0 in. 0 in. 0 Maximum Height: 0 in. Outside Air Data Usinter 110 CFM 110 CFM 110 CFM Infiltration Actual: 0.550 AC/hr 0.550 AC/hr 550 AC/hr Building Volume: X_12,000* Cu.ft. X_12,000* Cu.ft. K_0.0167 X_0.0167 110 CFM 110 CFM Total Building Infiltration: 110 CFM 110 CFM 110 CFM Total Building Ventilation: 0 CFM 0 CFM 0 CFM </td <td>Input Data</td> <td>[</td> <td>Dry Bulb</td> <td>Wet Bulb</td> <td>Rel.H</td> <td>lum</td> <td>Rel.H</td> <td>lum</td> <td>Dry Bulb</td> <td>Difference</td>	Input Data	[Dry Bulb	Wet Bulb	Rel.H	lum	Rel.H	lum	Dry Bulb	Difference
Main Trunk Runouts Calculate: Yes Yes Use Schedule: Yes Yes Roughness Factor: 0.00300 0.01000 Pressure Drop: 0.1000 in.wg./100 ft. 0.1000 in.wg./100 ft. Minimum Velocity: 0 ft./min 0 Maximum Velocity: 900 ft./min 750 ft./min 750 ft./min Maximum Velocity: 900 ft./min 750 ft./min 0 Maximum Height: 0 in. 0 in. Outside Air Data 0 in. 0 in. Infiltration Specified: 0.550 AC/hr 0.550 AC/hr 110 CFM Infiltration Actual: 0.550 AC/hr 0.550 AC/hr 0.550 AC/hr Building Volume: X 12,000* Cu.ft. X K 0.016Z X 0.016Z Total Building Infiltration: 110 CFM 110 CFM Total Building Ventilation: 0 0 CFM 0 CFM 0 CFM	Winter:		-2	-2.6	8	30%			70	n/a
Main TrunkRunoutsCalculate:YesYesUse Schedule:YesYesRoughness Factor:0.003000.01000Pressure Drop:0.1000 in.wg./100 ft.0.1000 in.wg./100 ft.Minimum Velocity:0ft./min0Maximum Velocity:900ft./min750Maximum Height:0in.00in.0in.Maximum Height:0in.00in.0in.Outside Air DataVinterSummerInfiltration Specified:0.550AC/hr0.550110CFM110CFMInfiltration Actual:0.550AC/hr0.550Building Volume:X12,000*Cu.ft.X12,000*Cu.ft.X12,000*Cutside Juilding Volume:X0.0167Cu.ft.Total Building Infiltration:110CFM110Total Building Ventilation:0CFM0Citated volume is based on custom building volume.0CFM	Summer:		87	70	4	43%	5	0%	75	18.65
Calculate:YesYesUse Schedule:YesYesRoughness Factor: 0.00300 0.01000 Pressure Drop: 0.1000 in.wg./100 ft. 0.1000 in.wg./100 ft.Minimum Velocity:0ft./min0ft.min0ft./minMaximum Velocity:900ft./min750ft./min0Minimum Height:0in.0in.0Outside Air Data0WinterInfiltration Specified: 0.550 AC/hr 0.550 AC/h	Duct Sizing Inputs									
Use Schedule: Yes Yes Roughness Factor: 0.00300 0.01000 Pressure Drop: 0.1000 in.wg/100 ft. 0.1000 in.wg/100 ft. Minimum Velocity: 0 ft./min 0 ft./min Maximum Velocity: 900 ft./min 750 ft./min Minimum Height: 0 in. 0 in. Outside Air Data Unfiltration Specified: 0.550 AC/hr 0.550 AC/hr 110 CFM 110 CFM Infiltration Actual: 0.550 AC/hr 0.550 AC/hr 110 CFM 0.550 AC/hr 0.550 AC/hr 0.550 AC/hr 110 CFM Infiltration Actual: 0.550 AC/hr 0.550 AC/hr 0.550 AC/hr 110 CFM Infiltration Actual: 0.550 AC/hr 0.550 AC/hr 110 CFM Infiltration Actual: 0.550 AC/hr 110 CFM 110 CFM	Δ	<u>/lain Trunk</u>			<u>Runouts</u>					
Roughness Factor: 0.00300 0.01000 Pressure Drop: 0.1000 in.wg./100 ft. 0.1000 in.wg./100 ft.Minimum Velocity: 0 ft./min 0 ft./minMaximum Velocity:900ft./min750Minimum Height: 0 in. 0 in.Maximum Height: 0 in. 0 in.Outside Air Data 0 0.550 AC/hr 0.550 AC/hrInfiltration Specified: 0.550 AC/hr 0.0167 Total Building Infiltration: 110 CFM 0 Total Building Ventilation: 0 CFM 0 Total Building Ventilation: 0 CFM 0 Total Building Ventilation: 0 CFM 0 CF	Calculate:	Yes			Yes					
Pressure Drop: 0.1000 in.wg./100 ft. 0.1000 in.wg./100 ft. Minimum Velocity: 0 ft./min 0 ft./min Maximum Velocity: 900 ft./min 750 ft./min Minimum Height: 0 in. 0 in. Maximum Height: 0 in. 0 in. Outside Air Data 0 550 AC/hr 0.550 AC/hr Infiltration Specified: 0.550 AC/hr 0.550 AC/hr Infiltration Actual: 0.550 AC/hr 0.550 AC/hr Building Volume: X 12,000* Cu.ft. X 12,000* Cu.ft. K 0.0167 X 0.0167 Total Building Infiltration: 110 CFM 0 CFM Total Building Ventilation: 0 CFM 0 CFM 0 CFM *Indicated volume is based on custom building volume. 0 CFM 0 CFM 0	Use Schedule:	Yes								
Minimum Velocity: 0 ft./min 0 ft./min Maximum Velocity: 900 ft./min 750 ft./min Minimum Height: 0 in. 0 in. Maximum Height: 0 in. 0 in. Outside Air Data 0 in. 0 550 Outside Air Data Winter Summer Summer Infiltration Specified: 0.550 AC/hr 0.550 AC/hr 110 CFM 110 CFM 110 CFM Infiltration Actual: 0.550 AC/hr 0.550 AC/hr Building Volume: X 12,000* Cu.ft. X 12,000* Cu.ft. K 0.0167 X 0.0167 Total Building Infiltration: 110 CFM 110 CFM Total Building Ventilation: 0 CFM 0 CFM 0 CFM *Indicated volume is based on custom building volume. 0 CFM 0 CFM 0	Roughness Factor:				0.01000					
Maximum Velocity: 900 ft./min 750 ft./min Minimum Height: 0 in. 0 in. Maximum Height: 0 in. 0 in. Outside Air Data Winter Summer Infiltration Specified: 0.550 AC/hr 0.550 AC/hr Infiltration Actual: 0.550 AC/hr 0.550 AC/hr Infiltration Actual: 0.550 AC/hr 0.550 AC/hr Building Volume: X 12,000* Cu.ft. X 12,000* Cu.ft. K 0.0167 X 0.0167 Total Building Infiltration: 110 CFM 110 CFM Total Building Ventilation: 0 CFM 0 CFM 0 CFM *Indicated volume is based on custom building volume. 0 CFM 0 CFM		0.1000	in.wg./10	00 ft.	0.1000	in.wg	J./100 ft.			
Minimum Height: 0 in. 0 in. Maximum Height: 0 in. 0 in. Outside Air Data										
Maximum Height: 0 in. 0 in. Outside Air Data Winter Summer Infiltration Specified: 0.550 AC/hr 0.550 AC/hr 110 CFM 110 CFM Infiltration Actual: 0.550 AC/hr 0.550 AC/hr Building Volume: X 12,000* Cu.ft. X 12,000* Cu.ft. K 0.0167 X 0.0167 Total Building Infiltration: 110 CFM 110 CFM Total Building Ventilation: 0 CFM 0 CFM 0 CFM *Indicated volume is based on custom building volume. 0 CFM 0 CF	5						n			
Outside Air Data Winter Summer Infiltration Specified: 0.550 AC/hr 0.550 AC/hr 110 CFM 110 CFM Infiltration Actual: 0.550 AC/hr 0.550 AC/hr Building Volume: X 12,000* Cu.ft. X 12,000* Cu.ft. K 0.0167 X 0.0167 Total Building Infiltration: 110 CFM 110 CFM Total Building Volume is based on custom building volume. 0 CFM 0 CFM		0	in.		0	in.				
WinterSummerInfiltration Specified:0.550AC/hr0.550AC/hr110CFM110CFMInfiltration Actual:0.550AC/hr0.550AC/hrBuilding Volume:X12,000*Cu.ft.X12,000*K0.0167Cu.ft.K0.0167CFMTotal Building Infiltration:110CFM110CFMTotal Building Volume:0CFM0CFM*Indicated volume is based on custom building volume.Vulume.Vulume.Vulume.	Maximum Height:	0	in.		0	in.				
Infiltration Specified: 0.550 AC/hr 0.550 AC/hr 110 CFM 110 CFM Infiltration Actual: 0.550 AC/hr 0.550 AC/hr Building Volume: X 12,000* Cu.ft. X 12,000* Cu.ft. Building Volume: X 12,000* Cu.ft. X 12,000* Cu.ft. K 0.0167 X 0.0167 Total Building Infiltration: 110 CFM 110 CFM Total Building Ventilation: 0 CFM 0 CFM Ventilation: 0 CFM *Indicated volume is based on custom building volume. Ventilation:	Outside Air Data									
110CFM110CFMInfiltration Actual:0.550AC/hr0.550AC/hrBuilding Volume:X12,000*Cu.ft.X12,000*G,600Cu.ft./hr6,600Cu.ft./hr6,600Cu.ft./hrX0.0167X0.0167X0.0167Total Building Infiltration:110CFM110CFMTotal Building Ventilation:0CFM0CFM*Indicated volume is based on custom building volume.Volume.Volume.Volume.										
Infiltration Actual:0.550AC/hr0.550AC/hrBuilding Volume:X12,000*Cu.ft.X12,000*Cu.ft.6,600Cu.ft./hr6,600Cu.ft./hr6,600Cu.ft./hrX0.0167X0.0167X0.0167Total Building Infiltration:110CFM110CFMTotal Building Ventilation:0CFM0CFM*Indicated volume is based on custom building volume.Volume.Volume.Volume.	Infiltration Specified:				0					
Building Volume: X 12,000* Cu.ft. X 12,000* Cu.ft. 6,600 Cu.ft./hr 6,600 Cu.ft./hr 6,600 Cu.ft./hr X 0.0167 X 0.0167 Total Building Infiltration: 110 CFM 110 CFM Total Building Ventilation: 0 CFM 0 CFM *Indicated volume is based on custom building volume. Volume. Volume. Volume.			110	CFM		110	CFM			
6,600Cu.ft./hr6,600Cu.ft./hrX0.0167X0.0167Total Building Infiltration:110CFM110Total Building Ventilation:0CFM0*Indicated volume is based on custom building volume.Volume.Volume	Infiltration Actual:		0.550	AC/hr	0	.550	AC/hr			
X0.0167X0.0167Total Building Infiltration:110CFM110CFMTotal Building Ventilation:0CFM0CFM*Indicated volume is based on custom building volume.0CFM0	Building Volume:	<u>X</u>	12,000*	Cu.ft.	<u>X 12,</u>	000*	Cu.ft.			
Total Building Infiltration:110CFM110CFMTotal Building Ventilation:0CFM0CFM*Indicated volume is based on custom building volume.0CFM0	-		6,600	Cu.ft./hr	6	,600	Cu.ft./hr			
Total Building Ventilation:0 CFM0 CFM*Indicated volume is based on custom building volume.		Σ	(0.0167		<u>X 0.0</u>	0167				
*Indicated volume is based on custom building volume.	Total Building Infiltration:		110	CFM		110	CFM			
	Total Building Ventilation:		0	CFM		0	CFM			
System 1	*Indicated volume is based	on custom	building	volume.						
System 1										
								_		
Infiltration & Ventilation Sensible Gain Multiplier: 13.04 = (1.10 X 0.988 X 12.00 Summer Temp. Difference)										nce)
Infiltration & Ventilation Latent Gain Multiplier: 12.52 = (0.68 X 0.988 X 18.65 Grains Difference)										
Infiltration & Ventilation Sensible Loss Multiplier: 78.23 = (1.10 X 0.988 X 72.00 Winter Temp. Difference)					= (1.10 X	0.988	3 X 72.00 V	Vinter Te	mp. Difference	e)
Winter Infiltration Specified: 0.550 AC/hr (110 CFM)										

Summer Infiltration Specified: 0.550 AC/hr (110 CFM)

Page 4

Load Preview Report

Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss	Sys Htg CFM	Sys Clg CFM	Sys Act CFM	Duct Size
Building	4.45	694	3,090	43,448	9,977	53,425	100,130	1,317	2,000	2,000	
System 1	4.45	694	3,090	43,448	9,977	53,425	100,130	1,317	2,000	2,000	18x18
Zone 1			3,090	43,448	9,977	53,425	100,130	1,317	2,000	2,000	18x18
1-First Floor			1,350	26,843	4,849	31,692	50,563	665	1,235	1,235	127
2-Office First Floor			120	1,951	307	2,258	3,859	51	90	90	16
3-Storage Room			270	7,347	4,108	11,455	6,054	80	338	338	46
4-Basement			1,350	7,308	713	8,021	39,654	521	336	336	46


Henniker Grange EXISTING With Floor Page 5

Total Building Summary Loads

omponent	Area	Sen	Lat	Sen	То
escription	Quan	Loss	Gain	Gain	Ga
ained Glass: Glazing-Historic stained glass with	192	7,872	0	10,318	10,3
exterior storms, U-value 0.57, SHGC 0.6			_		_
L: Door-Metal - Paper Honeycomb Core, U-value 0.56	58.5	2,358	0	590	5
ninsulated: Wall-Frame, Custom, Unisulated 2x4	1951.6	23,466	0	3,748	3,7
historic, U-value 0.167					_
A-0bw: Wall-Frame, no insulation in stud cavity, no	165	5,940	0	775	7
board insulation, brick finish, wood studs, U-value 0.5		~~~~~	•	o 404	
AA-0oc: Wall-Block, no blanket or board insulation,	620	26,070	0	3,404	3,4
open core, U-value 0.584	400	0.007	0		-
A-2s3oc-4: Wall-Basement, concrete block wall, R-2	160	2,287	0	202	2
foam board to 3', no framing, no interior finish, open					
core, 4' floor depth, U-value 0.128	04	0.000	0	0.1.1	
AA-0oc: Wall-Block, no blanket or board insulation,	61	2,633	0	344	3
open core, U-value 0.6	4 4 7 0	0.000	0	E 740	F 7
yered FG Batts: Roof/Ceiling-Under Attic with	1470	6,668	0	5,742	5,7
Insulation on Attic Floor (also use for Knee Walls and					
Partition Ceilings), Custom, Two haphazzard layes of					
fg batts with voids, U-value 0.063	200	4 000	0	005	
ppes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof	200	1,800	0	925	ę
Deck and Ceiling or Foam Encapsulated Roof Joists,					
Custom, FG in eaves Slopes, dark asphalt, U-value					
0.125 at Blown In Door: Boof/Coiling Linder Attic with	110	792	0	682	e
at Blown In.Poor: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and	110	192	0	002	C
Partition Ceilings), Custom, fiberglass.Poor, U-value					
0.1					
A-0tp: Floor-Over enclosed crawl space, No insulation	1350	11,639	0	1,940	1,9
on exposed walls, sealed or vented space, passive,	1550	11,055	0	1,940	1,5
no floor insulation, tile or vinyl, U-value 0.368					
ubtotals for structure:		01 505	0	20.670	20.0
	10	91,525	0	28,670	28,6
eople:	43		8,600	9,890	18,4
quipment:	650		0	1,100	1,1
ighting: uctwork:	650	0	0	2,217	2,2
		0	0	0	2.0
filtration: Winter CFM: 110, Summer CFM: 110		8,605	1,377	1,435	2,8
entilation: Winter CFM: 0, Summer CFM: 0		0	0	0	
ED Excursion:		0	0	137	1
otal Building Load Totals:		100,130	9,977	43,448	53,4
heck Figures					
otal Building Supply CFM: 2,000	CFM F	Per Square ft	:		0.647
quare ft. of Room Area: 3,090		e ft. Per Ton:			694
olume (ft ³): 12,000***	•				
*Indicated volume is based on custom building volume.					
uilding Loads					
	30 Btuh	100.130	MBH		
	48 Btuh		%		
	77 Btuh	19			
	25 Btuh		Tons (Based	On Sensible	+ Latent
otes			- (
	naram				
hvac is an ACCA approved Manual J, D and S computer pro alculations are performed per ACCA Manual J 8th Edition, \			nual D		

your design conditions.

Henniker Grange Tier Three HVAC Load Calculations

for

Town Of Henniker

Henniker NH 03242

Prepared By:

Margaret Dillon S.E.E.D.S.

603-532-8979 Sunday, October 22, 2023

Rhvac is an ACCA approved Manual J, D and S computer program. Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

Elite Software Development, Inc. Henniker Grange Tier Three Page 2

Project Report

General Project Inform	ation							
Project Title:		miltor Cronge	Tior Three					
Project Date:		nniker Grange						
Project Date: Tuesday, October 17, 2023 Client Name: Town Of Henniker								
Client City: Henniker NH 03242								
Company Name:		.E.D.S.	42					
Company Representat		rgaret Dillon						
Company Phone:	inia	8-532-8979						
Company E-Mail Addre		llon@myfairpo	pint.net					
Design Data		- , 1						
Design Data Reference City:			Concord A	P. New Ha	ampshire			
Building Orientation:			Front door					
Daily Temperature Rar	nge:		High					
_atitude:	0		43 Degrees					
Elevation:		3	342 ft.					
Altitude Factor:		0.9	988					
	Outdoor	Outdoor	Outdoor	Indoor	Indoor	Grains		
	Dry Bulb	Wet Bulb		Rel.Hum	Dry Bulb	Difference		
Winter:	-2	-2.6	n/a	n/a	<u>,</u> 70	n/a		
Summer:	87	70	43%	50%	75	19		
Check Figures								
Total Building Supply (CFM:		1,273	CFM F	Per Square ft	.:	0.412	
Square ft. of Room Are	ea:		3,090	Square	e ft. Per Ton:		995	
Volume (ft ³):		,	000***					
***Indicated volume is	based on c	ustom building	g volume.					
Building Loads		<i></i>						
Total Heating Required	Including	Ventilation Air		B Btuh	34.963			
Fotal Sensible Gain:				2 Btuh	74			
Total Latent Gain:	المماريطانية م	(antilation Aim		Btuh	26		Consible + Lotart	
Total Cooling Required	a including	ventilation Alf:	37,262	1 Btuh	3.11	TONS (Based Or	n Sensible + Latent)	
Notes								
Rhvac is an ACCA app	proved Man	ual J, D and S	computer prog	ram.				

Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

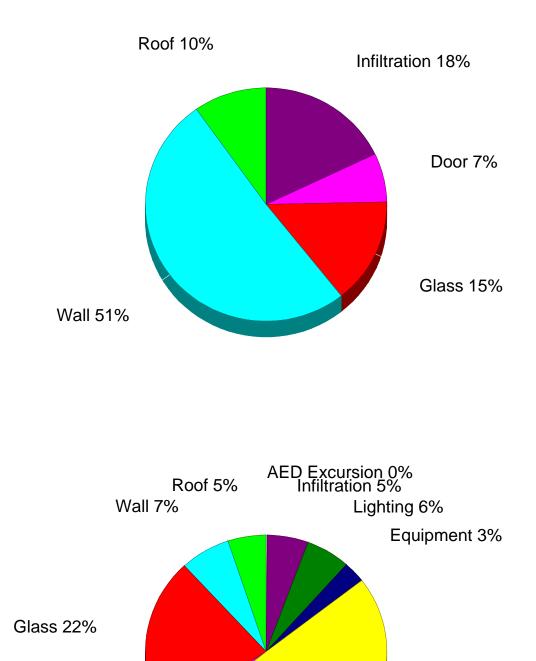
All computed results are estimates as building use and weather may vary.

Be sure to select a unit that meets both sensible and latent loads according to the manufacturer's performance data at your design conditions.

Miscellaneous Report

Theoonanoodo ric							
System 1 Existing		Outdoor	Outdoor	Outdo	or Inc	loor Indoo	r Grains
Input Data		Dry Bulb	Wet Bulb	Rel.Hu	m Rel.H	lum Dry Bull	Difference
Winter:		-2	-2.6	80		n/a 70	
Summer:		87	70	43	% 5	50% 75	5 18.65
Duct Sizing Inputs							
	Main Trunk			<u>Runouts</u>			
Calculate:	Yes			Yes			
Use Schedule:	Yes			Yes			
Roughness Factor:	0.00300			0.01000			
Pressure Drop:	0.1000	in.wg./10)0 ft.	0.1000 in	.wg./100 ft.		
Minimum Velocity:		ft./min		0 ft.			
Maximum Velocity:	900	ft./min		750 ft.	/min		
Minimum Height:	0	in.		0 in			
Maximum Height:	0	in.		0 in			
Outside Air Data							
		<u>Winter</u>		<u>Summ</u>	ner		
Infiltration Specified:		0.400	AC/hr	0.4	00 AC/hr		
		80	CFM		80 CFM		
Infiltration Actual:		0.400	AC/hr	0.4	00 AC/hr		
Building Volume:	<u>X_</u>	12,000*	Cu.ft.	X 12,00	<u>0*</u> Cu.ft.		
C C		4,800	Cu.ft./hr	4,8	00 Cu.ft./hr		
	Σ	(0.0167		X 0.01			
Total Building Infiltration:		80	CFM		80 CFM		
Total Building Ventilation:		0	CFM		0 CFM		
*Indicated volume is base	d on custom	building v	volume.				
_							
System 1							
Infiltration & Ventilation Second						Summer Temp. Diff	erence)
Infiltration & Ventilation La			12.52			Grains Difference)	,
Infiltration & Ventilation Second				= (1.10 X 0.	988 X 72.00 V	Vinter Temp. Differ	rence)
Winter Infiltration Specifie		0 AC/hr (8					
Summer Infiltration Specil	iea: 0.400	0 AC/hr (8	O CEM)				

Load Preview Report


Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss	Sys Htg CFM	Sys Clg CFM	Sys Act CFM	Duct Size
Building	3.11	995	3,090	27,662	9,601	37,264	34,963	460	1,273	1,273	
System 1	3.11	995	3,090	27,662	9,601	37,264	34,963	460	1,273	1,273	12x18
Zone 1			3,090	27,662	9,601	37,264	34,963	460	1,273	1,273	12x18
1-First Floor			1,350	16,990	4,549	21,539	21,023	276	782	782	87
2-Office First Floor			120	1,327	269	1,596	1,922	25	61	61	15
3-Storage Room			270	6,147	4,070	10,217	3,157	42	283	283	36
4-Basement			1,350	3,198	713	3,911	8,861	117	147	147	26

Page 5

Total Building Summary Loads

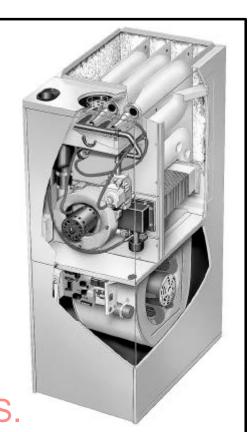
Component		Area	Sen	Lat	Sen	To
Description		Quan	Loss	Gain	Gain	Ga
istoric St & IP: Glazing-Historic single pane with exterior storms and interior glazing panels, U-value 0.37, SHGC 0.5		192	5,120	0	8,347	8,34
1L: Door-Metal - Paper Honeycomb Core, U-value 0.56 P cellulose 4": Wall-Frame, Custom, Dense Pack	1	58.5 951.6	2,358 11,662	0 0	590 1,864	59 1,80
Cellulose, U-value 0.083 2D1-0bw: Wall-Frame, R-21 closed cell 2 lb. spray foam insulation in 2 x 4 stud cavity, no board insulation, brick finish, wood studs, U-value 0.083		165	986	0	55	!
hermax or SPF: Wall-Block, Custom, Insulate Rim Joists, U-value 0.056		620	2,500	0	326	32
5A-2s3oc-4: Wall-Basement, concrete block wall, R-2 foam board to 3', no framing, no interior finish, open core, 4' floor depth, U-value 0.128		160	2,287	0	202	20
hermax or SPF: Wall-Block, Custom, Insulate Rim Joists, U-value 0.083		61	364	0	48	
6B-50: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Vented Attic, No Radiant Barrier, Dark Asphalt Shingles or Dark Metal, Tar and Gravel or Membrane, R-50 insulation, U-value 0.02		1580	2,275	0	1,327	1,3
opes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 0.08		200	1,152	0	592	5
Subtotals for structure: People: Equipment:		43	28,704	0 8,600 0	13,351 9,890 1,100	13,3 18,4 1,1
Lighting: Ductwork:		650	0	0	2,217 0	2,2
nfiltration: Winter CFM: 80, Summer CFM: 80 /entilation: Winter CFM: 0, Summer CFM: 0 AED Excursion:			6,259 0 0	1,001 0 0	1,043 0 62	2,0
Fotal Building Load Totals:			34,963	9,601	27,662	37,2
Check Figures						
Fotal Building Supply CFM:1,273Square ft. of Room Area:3,090/olume (ft³):12,000*****Indicated volume is based on custom building volume.			Per Square ft. e ft. Per Ton:	:		0.412 995
	34,963 27,662 9,601	Btuh	34.963 74 26	%		
	37,264	Btuh	3.11	Tons (Based	d On Sensible	+ Latent)
Notes Rhvac is an ACCA approved Manual J, D and S computed Calculations are performed per ACCA Manual J 8th Editio All computed results are estimates as building use and we be sure to select a unit that meets both sensible and later rour design conditions.	on, Vers eather n	ion 2, ar nay vary	' .		performance da	ata at

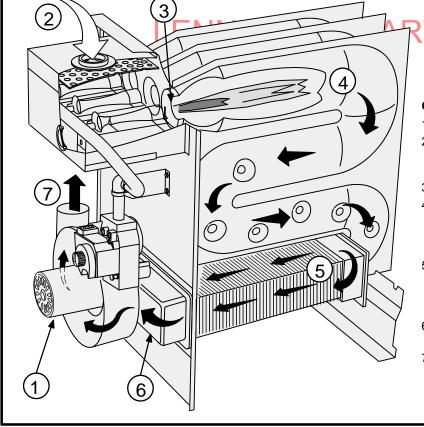
Rhvac - Residential & Light Commercial HVAC Loads	Elite Software Development, Inc.
S.E.E.D.S.	Henniker Grange Tier Three
Jaffrey, NH 03452	Page 6
Building Pie Chart	

Door 2%

People 50%

UNIT INFORMATION


G26 Corp. 9721-L11 Revised 07-2001


G26 SERIES UNITS

G26 series units are high-efficiency upflow gas furnaces manufactured with DuralokPlus[™] aluminized steel clamshell-type heat exchangers. G26 units are available in heating capacities of 50,000 to 125,000 Btuh and cooling applications up to 5 tons. Refer to Engineering Handbook for proper sizing.

Units are factory equipped for use with natural gas. A kit is available for conversion to LPG operation. G26-1 and -2 model units use electronic (intermittent pilot) ignition. G26-3, -4, -5 and -6 model units feature the Lennox SureLight[®] silicon nitride ignition system. Each unit meets the California Nitrogen Oxides (NO_x) Standards and California Seasonal Efficiency requirements without modification. All units use a redundant gas valve to assure safety shut-off as required by A.G.A. or C.G.A.

Information contained in this manual is intended for use by qualified service technicians only. All specifications are subject to change. Procedures outlined in this manual are presented as a recommendation only and do not supersede or replace local or state codes. In the absence of local or state codes, the guidelines and procedures outlined in this manual (except where noted) are recommended only.

G26 FURNACE▲ **4**G26 HEAT EXCHANGE ASSEMBLY

Combustion Process:

- 1. A call for heat starts the combustion air blower.
- 2. Outdoor air is drawn through pipe into the burner compartment where it mixes with gas in a conventional style inshot burner.
- 3. The SureLight ignition system lights the burners.
- 4. Combustion products are drawn downward through the heat exchanger. Heat is extracted as indoor air passes across the outside surface of the metal.
- 5. Latent heat is removed from the combustion products as air passes through the coil. Condensate (water) is formed as the combustion products cool.
- 6. As the combustion products exit the coil, condensate is collected and drained away.
- 7. Combustion products are pulled from the heat exchanger and forced into the flue.

Downloaded from www.Manualslib.com manuals search engine

)) Technical

SPECIFICATIONS

	Model No.		G26Q3/4-100	G26Q4/5-100	G <mark>26Q3/4-125</mark>	G26Q4/5-125				
Input Btuh (kW)			100,00	00 (29.3)	125,00	0 (36.6)				
Output Btuh (kW)			91,000 (26.7)	93,000 (27.2)	115,000 (33.7)	116,000 (34.0)				
☆A.F.U.E.			92.0%	92.0%	91.0%	92.0%				
California Seasonal Effic	ciency		86.6%	85.8%	87.5%	87.0%				
Exhaust pipe connect	tion (PVC) diameter-	– in. (mm)		2	2 (51)					
Intake pipe connection	n (PVC) diameter—	in. (mm)		3	6 (76)					
Condensate drain conne	ection (PVC)— in. (m	ım)		1/2	2 (12.7)					
Temperature rise range	— °F (°C)		50-80 (28-44)	40-70 (22-39)	55-85 (31-47)	50-80 (28-44)				
High static certified by (/	A.G.A./C.G.A.) — in.	wg. (Pa)		.50) (125)					
Gas Piping	Size I.P.S.	in.	1/2							
Natural or LF	PG/propane	mm			12.7					
Blower whe	Blower wheel nominal diameter x width motor output — hp (W) Nominal cooling	in.	10 x 10	11-1/2 x 9	10 x 10	11-1/2 x 9				
diameter		mm	254 x 254	292 x 229	254 x 254	292 x 229				
Blower motor output —	hp (W)		1/2 (373)	3/4 (560)	1/2 (373)	3/4 (560)				
Nominal cooling		Tons	2 to 4	3-1/2 to 5	2 to 4	3-1/2 to 5				
that can b	be added	kW	7.0 to 14.1	12.3 to 17.6	7.0 to 14.1	12.3 to 17.6				
Shipping weight — lbs.	(kg) 1 package		186 (84)	198 (90)	218 (99)	218 (99)				
Electrical characteristics			120 volts	— 60 hertz — 1 phas	se (all models) (less that	an 12 amps)				
		 Optional Acces 	sories (Must Be O	rdered Extra) 🗢						
LPG/Propane kit (option	al)		l	65K27	(all models)					
Filter and Filter Rack F ‡No. & size of filters -					Ten Pack (66K62) (508 x 635 x 25)					
Concentric Vent/Intake A	Air/Roof Termination	Kit (optional)		33K97 — 2	2 inch (51 mm)					
⊡Vent/Intak	ke Air Roof	2 inch (51 mm)	-MPAI							
Termination Kit (opt	tional) — vent size	3 inch (76 mm)		4	4J41					
①Vent/Intal		2 inch (51 mm)	15F74 (ring l 3	kit) — 22G44 (close o 0G79 (WTKX close o	couple) — 30G28 (WTH couple with extension ris	K close couple) ser)				
Termination Kit (opt	ional) — verit size	3 inch (76 mm)	44	J40 (close couple) —	81J20 (WTK close co	uple)				
Twinning Kits	Non-continuous lov	v speed		64H88	(all models)					
(optional)	Continuous low sp	eed		35J93 ((all models)					
Continuous Low Speed	Blower Switch (optio	nal)	44J	06 (-1 and -2 models)) Not used with Twinnir	ng Kits				

Annual Fuel Utilization Efficiency based on U.S. DOE test procedures and FTC labeling regulations. Isolated combustion system rating for non-weatherized furnaces. Polyurethane frame type filter. Determine from venting tables proper intake and exhaust pipe size and termination kit required. NOTE - 2 inch x 3 inch (51 mm x 76 mm) adaptor is furnished with -100 and -125 furnaces for exhaust pipe connection.

BLOWER PERFORMANCE DATA FILTER AIR RESISTANCE

cfm (L/s)	in. w.g. (Pa)
0 (0)	0.00 (0)
200 (95)	0.01 (0)
400 (190)	0.03 (5)
600 (285)	0.04 (10)
800 (380)	0.06 (15)
1000 (470)	0.09 (20)
1200 (565)	0.12 (30)
1400 (660)	0.15 (35)
1600 (755)	0.19 (45)
1800 (850)	0.23 (55)
2000 (945)	0.27 (65)
2200 (1040)	0.33 (80)
2400 (1130)	0.38 (95)
2600 (1225)	0.44 (110)

BLOWER PERFORMANCE DATA G26Q3/4-100 BLOWER PERFORMANCE

External Static Pressure		Air Volume and Motor Watts at Specific Blower Taps													
		High			Medium-High			M	ledium-L	ow	Low				
in. w.g.	Pa	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts		
0	0	2065	975	920	1760	830	735	1570	740	655	1245	590	520		
.10	25	2000	945	875	1730	815	705	1550	730	625	1240	585	490		
.20	50	1925	910	845	1685	795	675	1515	715	590	1225	580	470		
.30	75	1840	870	800	1625	765	630	1475	695	565	1210	570	455		
.40	100	1740	820	760	1550	730	595	1415	670	535	1165	550	430		
.50	125	1650	780	730	1460	690	560	1335	630	500	1110	525	405		
.60	150	1545	730	700	1370	645	530	1260	595	475	1045	495	385		
.70	175	1420	670	660	1250	590	495	1170	550	445	950	450	355		
.80	200	1270	600	620	1110	525	445	1025	485	395	825	390	325		
.90	225	1045	495	560	965	455	405	885	420	360	700	330	290		

NOTE — All air data is measured external to unit with 1 in. (25 mm) cleanable foam filter (not furnished) in place. Also see Filter Air Resistance table.

G26Q4/5-100 BLOWER PERFORMANCE

External Static Pressure		Air Volume and Motor Watts at Specific Blower Taps														
		High			Me	Medium-High			Medium			Medium-Low			Low	
in. w.g.	Pa	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts
0	0	2400	1135	1255	2185	1030	1070	1940	915	905	1740	820	765	1570	740	665
.10	25	2350	1110	1230	2150	1015	1055	1920	905	885	1710	805	755	1525	720	645
.20	50	2290	1080	1185	2105	995	1025	1875	885	865	1685	795	740	1505	710	640
.30	75	2225	1050	1170	2060	970	1005	1845	870	850	1655	780	730	1485	700	630
.40	100	2165	1020	1130	2010	950	985	1805	850	835	1620	765	720	1450	685	620
.50	125	2105	995	1115	1950	920	960	1755	830	810	1585	750	700	1415	670	605
.60	150	2040	965	1080	1895	895	940	1700	800	790	1540	725	690	1380	650	595
.70	175	1955	925	1045	1820	860	915	1640	775	775	1475	695	670	1340	630	590
.80	200	1850	875	1005	1730	815	885	1580	745	755	1430	675	660	1290	610	580
.90	225	1770	835	985	1650	780	855	1505	710	740	1370	645	645	1225	580	565

NOTE — All air data is measured external to unit with 1 in. (25 mm) cleanable foam filter (not furnished) in place. Also see Filter Air Resistance table.

G26Q3(4-125 BLOWER PERFORMANCE

External Static Pressure					Air Volu	me and	Motor Wat	tts at Spe	cific Blo	wer Taps			
		High			Medium-High			Medium-Low			Low		
in. w.g.	Pa	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts
0	0	2070	975	920	1735	820	725	1555	735	640	1235	585	500
.10	25	2010	950	885	1710	805	700	1535	725	625	1225	580	490
.20	50	1950	920	850	1675	790	680	1500	710	600	1210	570	470
.30	75	1975	930	820	1620	765	645	1465	690	575	1185	560	455
.40	100	1785	840	775	1560	735	615	1415	670	545	1140	540	435
.50	125	1700	800	745	1475	695	575	1345	635	520	1090	515	415
.60	150	1585	750	705	1410	665	555	1275	600	490	1035	490	390
.70	175	1475	695	675	1310	620	515	1185	560	460	975	460	370
.80	200	1350	635	640	1200	565	485	1090	515	425	865	410	340
.90	225	1200	565	595	1080	510	445	965	455	385	715	335	300

NOTE — All air data is measured external to unit with 1 in. (25 mm) cleanable foam filter (not furnished) in place. Also see Filter Air Resistance table.

G26Q4/5-125 BLOWER PERFORMANCE

External Static Pressure		Air Volume and Motor Watts at Specific Blower Taps														
		High			Me	Medium-High			Medium			Medium-Low			Low	
in. w.g.	Ра	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts
0	0	2400	1135	1210	2175	1025	1040	1965	925	895	1790	845	780	1610	760	670
.10	25	2315	1090	1175	2125	1005	1025	1930	910	875	1760	830	770	1580	745	660
.20	50	2255	1065	1150	2080	980	1000	1880	885	860	1740	820	755	1550	730	645
.30	75	2195	1035	1130	2030	960	975	1840	870	835	1710	805	750	1520	715	635
.40	100	2120	1000	1100	1970	930	960	1790	845	815	1665	785	730	1495	705	630
.50	125	2050	965	1080	1910	900	934	1745	825	800	1620	765	715	1460	690	620
.60	150	1985	935	1050	1840	870	905	1685	795	785	1565	740	705	1415	670	610
.70	175	1885	890	1020	1770	835	890	1635	765	775	1515	715	685	1370	645	595
.80	200	1815	855	1005	1690	800	860	1570	740	750	1450	685	670	1315	620	580
.90	225	1735	820	980	1615	760	835	1485	700	725	1385	655	655	1245	590	565

NOTE — All air data is measured external to unit with 1 in. (25 mm) cleanable foam filter (not furnished) in place. Also see Filter Air Resistance table.