AGENDA For Web Publication

December 5, 2023

TOWN OF HENNIKER, NEW HAMPSHIRE

SELECTMEN & SEWER COMMISSIONERS

AGENDA & PUBLIC HEARING

Place: Henniker Community Center 57 Main Street Henniker, NH 03242

Tuesday December 5, 2023

6:15 PM

- I. CALL TO ORDER
- II. NON-PUBLIC SESSION
- III. PLEDGE OF ALLEGIANCE
- IV. ANNOUNCEMENTS

V. CONSENT AGENDA

- 1) Consent Agenda December 5, 2023
- VI. **PUBLIC COMMENT #1** (For any comment by any Henniker resident on a topic. Request time limit, up to 3 minutes)
- VII. 6:30 p.m. PUBLIC HEARING
 2) <u>RSA 31:95 Accept and Appropriate Unanticipated State of NH Highway Block Grant Funding</u>
- VIII. APPOINTMENTS WITH THE BOARD
 3) Dina Pinnell, Energy Committee Henniker Energy Audit Reports

IX. NEW BUSINESS

- X. CONTINUED BUSINESS
 - 4) 2024 Budget

XI. TABLED BUSINESS

- Policies
 - III.1, III.3, III.5, III.7, IV.5
 - Personnel Policies tabled 3/21/23 pending input from TA/Finance/HR
- Crosswalk on Main St. Pending CNHRPC study and public input.
- ARPA Fund Prioritization
- Solar PILOT

XII. PAST MEETING MINUTES

- 5) Acceptance of Board of Selectmen public meeting minutes November 21, 2023, 6:15 p.m.
- 6) Acceptance of Board of Selectmen & Budget Advisory Committee joint public meeting minutes November 18, 2023, 8:30 a.m.

XIII. COMMUNICATIONS

- 7) Town Administrator Report
- 8) Correspondence Letters and Notices
- 9) Selectmen Reports
- **XIV. PUBLIC COMMENT #2** (For any comment by any Henniker resident on a topic. Request time limit, up to 3 minutes)
- XV. NON-PUBLIC If Necessary Non-public Session 91-A:3 II a, b, c, d, or e

XVI. ADJOURNMENT

XVII. UPCOMING DATES 2023

December 6, 2023 – Broadband Committee Meeting @ 4:30 p.m.
December 6, 2023 – Henniker Community School Board Meeting @ 6:00 p.m.
December 6, 2023 – Conservation Commission Meeting @ 7:00 p.m.
December 7, 2023 – Capital Improvement Program Meeting @ 6:00 p.m.
December 12, 2023 – Concert Committee Meeting @ 6:30 p.m.
December 13, 2023 – Town Hall Closed 12:00 p.m. – 2:00 p.m.
December 13, 2023 – John Stark School Board Meeting @ 6:00 p.m.
December 13, 2023 – John Stark School Board Meeting @ 6:00 p.m.
December 14, 2023 – Capital Improvement Program Meeting @ 6:00 p.m.
December 14, 2023 – Capital Improvement Program Meeting @ 6:00 p.m.
December 18, 2023 – Budget Advisory Committee Meeting @ 4:30 p.m.
December 18, 2023 – Energy Committee Meeting @ 5:30 p.m.
December 18, 2023 – Henniker Youth Athletic Committee Meeting @ 7:00 p.m.

Please see the town website <u>www.henniker.org</u> and bulletin boards for meeting dates, times, locations, and agendas. (Calendar: <u>Public Meeting + Holiday | Henniker, NH</u>)

Visitor Orientation to the Town Selectman's Meeting

Welcome to this evening's Selectmen's meeting. Please note that the purpose of the meeting is for the Selectmen to accomplish its work within a qualitative timeframe. Meetings are open to the public, but public participation is limited. If you wish to be heard by the board, please note the "Public Comment" at the beginning and end of the meeting to speak about items on a meeting agenda and/or matters pertaining to the business of the Selectmen. In addition, public hearings may be scheduled for public comment on specific matters. Speakers must be residents of the Town of Henniker, property owners in the town of Henniker, and/or designated representatives of recognized civic organizations or businesses located in the Town of Henniker. When they are at the podium, speakers first need to recite their name and address for the record. Visitors should address their comments to the board and not to any individual member. Each speaker shall be provided with a single opportunity for comment, limited to three (3) minutes. Public forum shall be limited to fifteen (15) minutes. Visitors should not expect a response to their comments or questions since the Board may not have discussed or taken a position on a matter. Public Comment is not a two-way dialogue between speaker(s), Selectmen, and/or the Town Administrator. The Chair will preserve strict order and decorum at all Board of Selectmen meetings. Outbursts from the public are not permitted.

TOWN OF HENNIKER, NEW HAMPSHIRE BOARD OF SELECTMEN & SEWER COMMISSIONERS CONSENT AGENDA

Tuesday, December 5, 2023

Consent Agenda

Item 1:	SW Cole Contract Approval – Communications Tower Project
Item 2:	Payroll Check Register – November 29, 2023
Item 3:	Account Payable Manifest – December 6, 2023

Board of Selectmen Approval:

*Please note that the Consent Agenda is subject to change until 4:00 pm the day of a scheduled Selectmen's Meeting.

TOWN OF HENNIKER, NEW HAMPSHIRE

Consent Agenda STAFF REPORT

DATE:	11/27/2023
TITLE:	SW Cole Contract Approval
INITIATED BY:	Communications Tower Project Team
PREPARED BY:	Diane Kendall, Town Administrator
PRESENTED BY:	Consent Agenda

AGENDA DESCRIPTION: The purpose of this consent agenda item is to authorize the Town Administrator to execute the contract between the Town of Henniker and S.W. Cole on behalf of the Board.

BACKGROUND: This contract is for a third-party engineering consultant to provide construction materials testing and observation services for the Communications Tower Project. This item was discussed at the November 7 meeting, but a record of authorization was not recorded.

Legal Authority:	n/a
Financial Details: the project.	\$1,000 to \$2,000 and within the scope of the additional \$100,000 local ARPA funds allocated to

Craney Hill Communications Tower Project Team: Technical expertise requirement.

Town Administrator Comment: NA

Suggested Action/Recommendation:

By way of signature the Henniker Selectboard authorizes Town Administrator Diane Kendall to execute presented contract for S.W. Cole as presented.

Kris Blomback:	Date:
Bill Marko :	Date:
D. Scott Osgood:	Date:
Jeff Morse:	Date:
Neal Martin:	Date:

TOWN OF HENNIKER PAYROLL CHECK REGISTERS DATE: November 29, 2023

WAGES: \$56,427.06 PAYROLL DEDUCTIONS: <u>\$12,180.25</u> TOTAL: \$68,607.31

BOARD OF SELECTMEN APPROVAL

Kris BlombackDateScott OsgoodDateBill MarkoDateNeal MartinDateJeff MorseDate

han vn Administrator

11/28/23 Date

Treasurer

Date

		Foi	r 11/29/2023 to	11/29/2	2023	
Pay Code	Regular Hours	Suppl. Hours	Regular Gross	OT Hours	OT Gross	
Department: CODE CODE Department Totals For:	CODE					
SALARY		0.00	405 57			
Totals:	18.00 18.00	0.00 0.00	485.57 485.57	0.00 0.00	0.00 0.00	
Department: CSWW CSWW						
Department Totals For:	CSWW					
HOLIDAY	16.00	0.00	1,118.88	0.00	0.00	
REGULAR	11.00	0.00	504.58	0.00	0.00	
Totals:	27.00	0.00	1,623.46	0.00	0.00	
Department: FIRE/RESCUE Department Totals For:	FIRE/RESCUE					
OVERTIME	0.00	0.00	0.00	3.50	118.23	
REGULAR	39.00	0.00	776.04	0.00	0.00	
Totals:	39.00	0.00	776.04	3.50	118.23	
Department: HIGHWAY HIG Department Totals For:						
HOLIDAY	96.00	0.00	2,646.40	0.00	0.00	
OVERTIME REGULAR	0.00 150,00	0.00	0.00 4,174.20	39.00	1,943.83	
VACATION	8.00	0.00	160.40	0.00	0.00 0.00	
Totals:	254.00	0.00	6,981.00		1,943.83	
REGULAR SALARY Totals:	92.00 45.00 137.00	0.00 0.00 0.00	2,043.54 1,608.40 3,651.94	0.00 0.00 0.00	0.00 0.00 0.00	
Department: POLICE POLIC Department Totals For: I						
EVENING	161.50	0.00	171 15	0.00	0.00	
HOLIDAY	23.00	0.00	121.13 569.56	0.00 0.00	0.00	
MIDNIGHT	78.00	0.00	78.00	0.00	0.00	
OVERTIME	0.00	0.00	0.00	6.00	235.05	
REGULAR VACATION	404.00	0.00	12,176.71	0.00	0.00	
Totals:	12.00 678.50	0.00 0.00	332.68 13,278.08	$0.00 \\ 6.00$	0.00 235.05	
epartment: RESCUE RESCU						
epartment Totals For: R	RESCUE					
COMP OVER BASE	1.75	0.00	47.69	0.00	0.00	
HALFTIME - FIRE	36.00	0.00	462.48	0.00	0.00	
HOLIDAY OVERTIME	65.50	0.00	1,798.80	0.00	0.00	
REGULAR	0.00 252.50	0.00 0.00	0.00 6,227.21	66.50 0.00	2,384.70 0.00	
SICK	12.50	0.00	400.63	0.00	0.00	
Totals:	368.25	0.00	8,936.81		2,384.70	
epartment: SELECTMAN SE epartment Totals For: S						
HOLIDAY	85.00	0.00	2,784.38	0.00	0.00	
REGULAR	70.00	0.00	1,558.28	0.00	0.00	
SALARY	44.25	0.00	1,908.77	0.00	0.00	

WAGES

WAGES

DEPARTMENTAL HOURS AND GROSS SUMMARY REPORT FOR TOWN OF HENNIKER For 11/29/2023 to 11/29/2023

	For 11/29/2023 to 11/29/2023									
Pay Code	Regular Hours	Suppl. Hours	Regular Gross	OT Hours	OT Gross					
Totals:	199.25	0.00	6,251.43	0.00	0.00					
Department: TC/TX TOWN Department Totals For:		LLECTOR								
HOLIDAY	32.00	0.00	836.53	0.00	0.00					
OVERTIME	0.00	0.00	0.00	1.00	29,94					
REGULAR	24.00	0.00	479.04	0.00	0.00					
SALARY	28.00	0.00	775.75	0.00	0.00					
Totals:	84.00	0.00	2,091.32	1.00	29.94					
Department: TRANSFER TR	ANSFER									
Department Totals For:	TRANSFER									
HOLIDAY	57.50	0.00	1,470.08	0.00	0.00					
REGULAR	95.00	0.00	2,215.07	0.00	0.00					
Totals:	152.50	0.00	3,685.15	0.00	0.00					
Department: WELFARE WEL	FARE									
Department Totals For:										
HOLIDAY	2.00	0.00	42.48	0.00	0.00					
REGULAR	5.00	0.00	106.20	0.00	0.00					
VACATION	7.00	0.00	148.68	0.00	0.00					
Totals:	14.00	0.00	297.36	0.00	0.00					
Department: WWTP WASTE	WATER TREATMENT	PLANT								
Department Totals For: 1	WTP									
HOLIDAY	48.00	0.00	1,370.88	0.00	0.00					
OVERTIME	0.00	0.00	0.00	6.00	229.95					
REGULAR	53.50	0.00	1,486.33	0.00	0.00					
SICK	10.50	0.00	373.59	0.00	0.00					
USECOMP	8.00	0.00	196.40	0.00	0.00					
Totals:	120.00	0.00	3,427.20	6.00	229.95					
Grand Totals:										
COMP OVER BASE	1.75	0.00	47.69	0.00	0.00					
EVENING	161.50	0.00	121.13	0.00	0.00					
HALFTIME - FIRE	36.00	0.00	462.48	0.00	0.00					
HOLIDAY	425.00	0.00	12,637.99	0.00	0.00					
MIDNIGHT	78.00	0.00	78.00	0.00	0.00					
OVERTIME	0.00	0.00	0.00		4,941.70					
REGULAR	1,196.00	0.00	31,747.20	0.00	0.00					
SALARY	135.25	0.00	4,778.49	0.00	0.00					
SICK	23.00	0.00	774.22	0.00	0.00					
USECOMP VACATION	8.00 27.00	0.00 0.00	196.40 641.76	0.00 0.00	0.00 0.00					
Totals:	2,091.50	0.00	51,485.36		4,941.70	= \$56427.06				
-	,									

			HAYKOL DEDIKETIONS
11/28/2023	Remit	ttance Invoice Report	Page: 1/1
08:16 AM			
Vendor	Item Code	GL Number	Amount
IRS - IRS PAYMENT			
	FITW	01-0000-2025-001	5,200.35
	SOCSEC_EE	01-0000-2025-001	2,505.84
	SOCSEC_ER	01-0000-2025-001	2,505.84
	MEDICARE_EE MEDICARE_ER	01-0000-2025-001 01-0000-2025-001	799.39 799.39
		01 0000 2029 001	
Invoice Total:			11,810.81
Sub Totals:			
FITW	5,200.35		
MEDICARE	1,598.78		
SOCSEC	5,011.68		
EMPOWER - EMPOWER RETIREMENT			
EMPOWER - EMPOWER RETIREMENT	EMPOWER	01-0000-2025-020	107.50
	EMPOWER-ROTH	01-0000-2025-020	261.94
Invoice Total:			369.44
Sub Totals:			
EMPOWER	107.50		
EMPOWER-ROTH	261.94		
Grand Totals:			
Invoice Count: 2			
Involce counc: 2			12,180.25
Sub Totals:			
EMPOWER	107.50		
EMPOWER-ROTH	261.94		
FITW	5,200.35		
MEDICARE	1,598.78		
SOCSEC	5,011.68		

TOWN OF HENNIKER PAYROLL CHECK REGISTERS DATE: November 29, 2023

WAGES: \$56,427.06 PAYROLL DEDUCTIONS: \$12,180.25 TOTAL: \$68,607.31

BOARD OF SELECTMEN APPROVAL

Kris Blomback	Date
Scott Osgood	Date
Bill Marko	Date
Neal Martin	Date
Jeff Morse	Date

dn wn Administrator

11/28/23 Date

Treasurer

Date

		Foi	r 11/29/2023 to	11/29/2	2023	
Pay Code	Regular Hours	Suppl. Hours	Regular Gross	OT Hours	OT Gross	
Department: CODE CODE Department Totals For:	CODE					
SALARY		0.00	405 57			
Totals:	18.00 18.00	0.00 0.00	485.57 485.57	0.00 0.00	0.00 0.00	
Department: CSWW CSWW						
Department Totals For:	CSWW					
HOLIDAY	16.00	0.00	1,118.88	0.00	0.00	
REGULAR	11.00	0.00	504.58	0.00	0.00	
Totals:	27.00	0.00	1,623.46	0.00	0.00	
Department: FIRE/RESCUE Department Totals For:	FIRE/RESCUE					
OVERTIME	0.00	0.00	0.00	3.50	118.23	
REGULAR	39.00	0.00	776.04	0.00	0.00	
Totals:	39.00	0.00	776.04	3.50	118.23	
Department: HIGHWAY HIG Department Totals For:						
HOLIDAY	96.00	0.00	2,646.40	0.00	0.00	
OVERTIME REGULAR	0.00 150,00	0.00	0.00 4,174.20	39.00	1,943.83	
VACATION	8.00	0.00	160.40	0.00	0.00 0.00	
Totals:	254.00	0.00	6,981.00		1,943.83	
REGULAR SALARY Totals:	92.00 45.00 137.00	0.00 0.00 0.00	2,043.54 1,608.40 3,651.94	0.00 0.00 0.00	0.00 0.00 0.00	
Department: POLICE POLIC Department Totals For: I						
EVENING	161.50	0.00	171 15	0.00	0.00	
HOLIDAY	23.00	0.00	121.13 569.56	0.00 0.00	0.00	
MIDNIGHT	78.00	0.00	78.00	0.00	0.00	
OVERTIME	0.00	0.00	0.00	6.00	235.05	
REGULAR VACATION	404.00	0.00	12,176.71	0.00	0.00	
Totals:	12.00 678.50	0.00 0.00	332.68 13,278.08	$0.00 \\ 6.00$	0.00 235.05	
epartment: RESCUE RESCU						
epartment Totals For: R	RESCUE					
COMP OVER BASE	1.75	0.00	47.69	0.00	0.00	
HALFTIME - FIRE	36.00	0.00	462.48	0.00	0.00	
HOLIDAY OVERTIME	65.50	0.00	1,798.80	0.00	0.00	
REGULAR	0.00 252.50	0.00 0.00	0.00 6,227.21	66.50 0.00	2,384.70 0.00	
SICK	12.50	0.00	400.63	0.00	0.00	
Totals:	368.25	0.00	8,936.81		2,384.70	
epartment: SELECTMAN SE epartment Totals For: S						
HOLIDAY	85.00	0.00	2,784.38	0.00	0.00	
REGULAR	70.00	0.00	1,558.28	0.00	0.00	
SALARY	44.25	0.00	1,908.77	0.00	0.00	

WAGES

WAGES

DEPARTMENTAL HOURS AND GROSS SUMMARY REPORT FOR TOWN OF HENNIKER For 11/29/2023 to 11/29/2023

	For 11/29/2023 to 11/29/2023									
Pay Code	Regular Hours	Suppl. Hours	Regular Gross	OT Hours	OT Gross					
Totals:	199.25	0.00	6,251.43	0.00	0.00					
Department: TC/TX TOWN Department Totals For:		LLECTOR								
HOLIDAY	32.00	0.00	836.53	0.00	0.00					
OVERTIME	0.00	0.00	0.00	1.00	29,94					
REGULAR	24.00	0.00	479.04	0.00	0.00					
SALARY	28.00	0.00	775.75	0.00	0.00					
Totals:	84.00	0.00	2,091.32	1.00	29.94					
Department: TRANSFER TR	ANSFER									
Department Totals For:	TRANSFER									
HOLIDAY	57.50	0.00	1,470.08	0.00	0.00					
REGULAR	95.00	0.00	2,215.07	0.00	0.00					
Totals:	152.50	0.00	3,685.15	0.00	0.00					
Department: WELFARE WEL	FARE									
Department Totals For:										
HOLIDAY	2.00	0.00	42.48	0.00	0.00					
REGULAR	5.00	0.00	106.20	0.00	0.00					
VACATION	7.00	0.00	148.68	0.00	0.00					
Totals:	14.00	0.00	297.36	0.00	0.00					
Department: WWTP WASTE	WATER TREATMENT	PLANT								
Department Totals For: 1	WTP									
HOLIDAY	48.00	0.00	1,370.88	0.00	0.00					
OVERTIME	0.00	0.00	0.00	6.00	229.95					
REGULAR	53.50	0.00	1,486.33	0.00	0.00					
SICK	10.50	0.00	373.59	0.00	0.00					
USECOMP	8.00	0.00	196.40	0.00	0.00					
Totals:	120.00	0.00	3,427.20	6.00	229.95					
Grand Totals:										
COMP OVER BASE	1.75	0.00	47.69	0.00	0.00					
EVENING	161.50	0.00	121.13	0.00	0.00					
HALFTIME - FIRE	36.00	0.00	462.48	0.00	0.00					
HOLIDAY	425.00	0.00	12,637.99	0.00	0.00					
MIDNIGHT	78.00	0.00	78.00	0.00	0.00					
OVERTIME	0.00	0.00	0.00		4,941.70					
REGULAR	1,196.00	0.00	31,747.20	0.00	0.00					
SALARY	135.25	0.00	4,778.49	0.00	0.00					
SICK	23.00	0.00	774.22	0.00	0.00					
USECOMP VACATION	8.00 27.00	0.00 0.00	196.40 641.76	0.00 0.00	0.00 0.00					
Totals:	2,091.50	0.00	51,485.36		4,941.70	= \$56427.06				
-	,									

			HAYKOL DEDIKETIONS
11/28/2023	Remit	ttance Invoice Report	Page: 1/1
08:16 AM			
Vendor	Item Code	GL Number	Amount
IRS - IRS PAYMENT			
	FITW	01-0000-2025-001	5,200.35
	SOCSEC_EE	01-0000-2025-001	2,505.84
	SOCSEC_ER	01-0000-2025-001	2,505.84
	MEDICARE_EE MEDICARE_ER	01-0000-2025-001 01-0000-2025-001	799.39 799.39
		01 0000 2029 001	
Invoice Total:			11,810.81
Sub Totals:			
FITW	5,200.35		
MEDICARE	1,598.78		
SOCSEC	5,011.68		
EMPOWER - EMPOWER RETIREMENT			
EMPOWER - EMPOWER RETIREMENT	EMPOWER	01-0000-2025-020	107.50
	EMPOWER-ROTH	01-0000-2025-020	261.94
Invoice Total:			369.44
Sub Totals:			
EMPOWER	107.50		
EMPOWER-ROTH	261.94		
Grand Totals:			
Invoice Count: 2			
Involce counc: 2			12,180.25
Sub Totals:			
EMPOWER	107.50		
EMPOWER-ROTH	261.94		
FITW	5,200.35		
MEDICARE	1,598.78		
SOCSEC	5,011.68		

APPOINTMENTS WITH THE BOARD

November 17, 2023

Diane Kendall Town Administrator 18 Depot Hill Road Henniker, NH 03242

Diane,

The purpose of the is letter is to serve as a very brief summary of the separate scoping studies, or energy audits, completed for The Town Hall, Grange, and Community Center. The second page offers comparison snap shots of the three buildings.

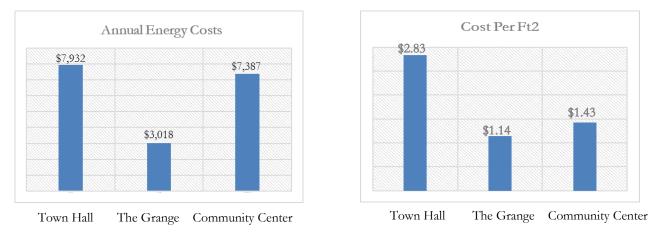
There is a great deal of information in the individual reports, in both explanations and details which would be important to successful projects. This two page summary is just offered to assist in decision making, but also to propose treating the recommendations as a single project. Potential funding opportunities from the Inflation Reduction Act (IRA –which is a tax credit, but offers municipalities and others without a tax liability a direct cash payment) and other incentives from Eversource or NHCDFA, may make 'packaging' worthwhile.

As shown in the chart below, a total investment of an estimated \$50,826 is predicted to save an estimated \$3,678 a year at current energy prices, and 344 million Btus of Source Energy. Contact Jack Paloucek at Eversource to determine whether the energy savings warrant financial incentives from the NH Saves program for municipal buildings.

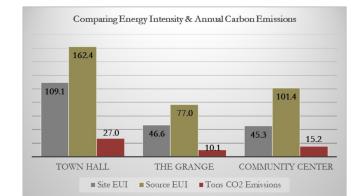
						Source	
			Simple		Site Energy	Energy	Annual
		Annual \$	Payback	Annualized	Saved	Saved	Reduction
	Investment	Savings	Years	ROI	MMBTU	MMBTU	Tons CO2
Town Hall	\$18,320	\$1,437	12.7	2.7%	78.6	98.5	6.8
Community Center	\$8,554	\$1,035	8.3	4.5%	107.6	163.0	8.0
The Grange Tier 1	\$1,820	\$166	11.0	2.8%	57.6	70.1	4.0
The Grange Tier 2	\$22,232	\$1,040	21.4	0.6%	9.6	12.6	0.7
Totals	\$50,926	\$3,678	13.8	2.4%	253.4	344.2	19.5

The estimated costs for each ESM is just that; an estimate. I recommend you show the reports to an insulation contractor for a cost proposal for each ESM. Targeted air sealing and improving insulation levels is recommended for each of the buildings. This is especially so for the Town Hall to create continuous air and thermal barrier between the first floor and the unheated 2nd floor.

The second most significant set of recommendations involves revisiting thermostat controls and settings in the Town Hall and Teen Center in particular. Each of those reports include a discussion on thermostat settings and set backs. In a nut shell—more aggressive thermostat set backs for nighttime and weekends are recommended for fossil fuel equipment, while heat pumps operate most efficiently if kept at the same thermostat setting. Heating and cooling load calculations were performed for each building, in large part to determine if the heating capacities of the installed heat pumps are adequate to rely on the heat pumps for heating, thereby reducing oil usage at the Town Hall and the much more costly electric resistance baseboard at the Teen Center. Completing the recommended envelope improvements—which reduces loads and improves comfort—is expected to allow the heat pumps to serve for primary heating, thereby reducing the reliance on less efficient systems.


Lastly, I appreciate that the reports can seem quite technical and dense. Please know that I would be willing to meet with the Energy Committee on zoom to answer specific questions.

Sincere regards,


Margaret


Energy Metric Comparisons

There are several ways to compare energy usage in buildings if needing to prioritize investment dollars. From annual cost perspective, the Town Hall and Community Center have the highest annual costs, though the larger floor area of the Community Center makes it appear 'more cost effective' per square foot. Considering the infrequent use of the CC, it may then appear to be 'more wasteful' in terms of the energy used to maintain a largely unoccupied building.

The EUI of a building is being used more often to not only compare buildings of similar uses, but to measure reductions in energy usage following efficiency improvements. But that can be misleading, as improvements to the envelope may not register the level of improvement on a larger building. Looking at Source EUI highlights the inefficiency of the existing electric grid, but overall the pattern is the same as costs.

In terms of energy usage by type or source, the Community Center (actually the Teen Center) uses the most electricity by far, where as the Town Hall consumes the most fossil fuels. The recommendations suggest relying on the installed heat pumps in both locations: to use less electricity at the Teen Center and burn less oil at the Town Hall.

MEMORANDUM

то	Nichol Tyc, Eversource
CC	Mounaim Hamim, Eversource
FROM	Alyssa Gianotti, GDS Associates
DATE	May 30, 2023
RE	Town of Henniker, Scoping Study Memo

GDS Associates, working on behalf of Eversource, has conducted a scoping study of three municipal buildings serving the Town of Henniker: Transfer Station/Recycling Center located at 1393 Weare Road (Route 114), the Fire and Rescue Station located at 216 Maple Street, and the Highway Garage located at 209 Ramsdell Road. GDS performed the following major activities:

- Performed site visits on April 11th and 12th to document existing conditions.
- Identified loads and potential energy conservation measures (ECMs).
- Collected and benchmarked historical electric consumption to understand usage profiles.
- Developed high-level savings and cost estimates.

This scoping study provides a description of potential electric ECMs that were identified during the site visit and outlines next steps for further developing the measures based on the Town's interest. Table 1 provides a summary of estimated costs and savings¹.

Measure	Installation Cost ^{1,2}	Annual Electric Savings (kWh)	Annual Propane Savings (Gal)	Annual Cost Savings	Simple Payback (years)
ECM-1: Fire Station - Pipe Insulation	\$100	370	0	\$63	1.6
ECM-2: All Buildings - Lighting Upgrades	\$5,400	5,900	0	\$1,003	5.4
ECM-3: Fire Station and Transfer Station Weatherization	\$2,400	880	42	\$300	8.0
ECM-4: Transfer Station (Hopper) - Ductless MSHP	\$8,500	6,300	0	\$1,071	7.9
ECM-5: Fire Station - Ducted ASHP	\$65,400	-23,000	2,700	\$5,729	11.4
Total	\$81,800	-9,550	2,742	\$8,165	10.0
¹ Budgetary costs estimated based on past experience ² Installation cost assumes each measure is a retrofit and the total of	cost is eligible				

TABLE 1. SUMMARY OF SCOPING STUDY OPPORTUNITIES

PROJECT OVERVIEW

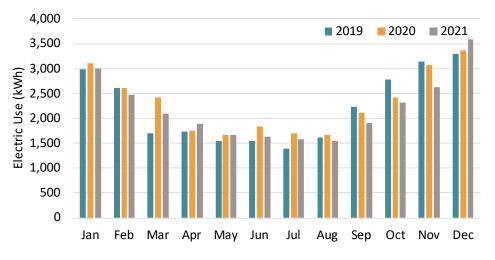
Town of Henniker has nine municipal buildings, excluding schools. Of these nine, the Energy Committee selected three to receive scoping studies:

- Transfer Station at 1393 Weare Road
- Fire and Rescue Station at 216 Maple Street

¹ The costs and savings provided are estimates and require further refinement prior to implementing ECMs for incentive eligibility.

• Highway Garage at 209 Ramsdell Road

Transfer Station


The Transfer station and Recycling Center has multiple small buildings associated with the operations. Each of the three buildings has their own electric meter. The recycle building is a metal framed building with multiple doors for town residents to pass through recyclable materials. Materials are sorted and placed in one of four compactors. The building is heated by a waste oil heater controlled by a manual thermostat. The high bay lighting has been converted to LED. One T12 fixture was found in the bathroom. Other process electric loads include an air compressor and wire tripper that are used infrequently.

The Parks Barn is an unheated storage building with LED strip fixtures lighting much of the interior. A few examples of incandescent bulbs were found in the storage garages and one high pressure sodium (HPS) bulb was observed in a wall mounted exterior fixture.

The Hopper building has two parts, a conditioned office space and the unheated drop space where trash goes down the chute to the compactor that fills trailers to be hauled offsite. The motor on the compactor is 30HP with a NEMA nominal efficiency of 91-percent. Interior lighting throughout both parts of the building is LED. Most of the wall packs are LED with daylight and motion sensing. One non-LED wall pack was noted but may be out of service. The office portion of the Hopper building has electric resistance baseboard heat and window air conditioner that stays in the window year-round. Both systems are controlled manually. The roof of the office is partially damaged, and the windows and door have inconsistent weatherstripping.

HISTORICAL ENERGY CONSUMPTION AND BENCHMARKING

The building is served by electricity. Figure 1 shows the historical electric use by month for 2019 through 2021. The use profile is consistent with an electric heating load.

FIGURE 1. HISTORICAL ELECTRIC CONSUMPTION: TRANSFER STATION

Benchmarking the energy use of the facility against buildings of similar type is critical to assess the energy savings potential and performance of the end-use equipment. The energy use intensity (EUI) is used for benchmarking since it represents a normalized use per facility area and allows similar buildings to be compared directly.

Figure 2 shows historical and benchmark² electric EUI. The use of the facility is slightly above the electric benchmark use which indicates opportunity for energy savings.

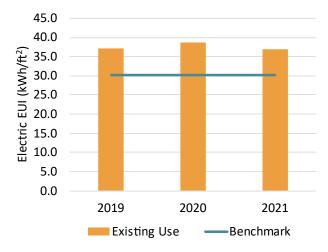


FIGURE 2. HISTORICAL AND BENCHMARK ELECTRIC EUI COMPARISON: TRANSFER STATION

The electric use is not related to warmer outside air conditions, as shown in Figure 3. The cooling degree days (CDDs) are a representation of how much cooling is required when outside air temperatures are above the balance point of 65°F. As CDDs increase the electric use does not correlate, indicating there is a non-weather dependent cooling use.

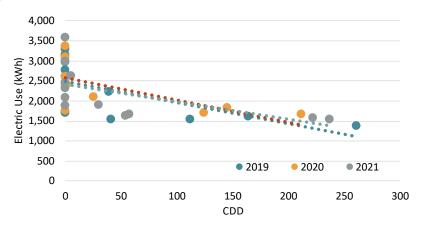


FIGURE 3. ELECTRIC USE COMPARED TO COOLING DEGREE DAYS: TRANSFER STATION

Electric use is, however, related to colder outside air conditions as shown in Figure 4. The heating degree days (HDDs) are a representation of how much heating is required when outside air temperatures are below the balance point of 65°F. As HDDs increase electric use trends higher, indicating there is weather-dependent heating use.

² Using Commercial Buildings Energy Consumption Survey data compiled by the U.S. Energy Information Administration.

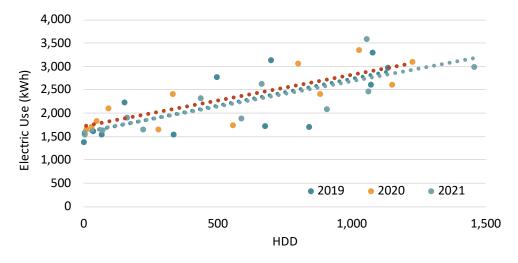


FIGURE 4. ELECTRIC USE COMPARED TO HEATING DEGREE DAYS: TRANSFER STATION

Fire and Rescue Station

The Fire Station is a slab-on-grade building with wood framing and ventilated pitched attic. The building was constructed in 1994. The attic has received additional insulation since the original construction. The windows, man doors, and most of the garage doors are original. The six overhead doors appeared to be in adequate condition. Air gaps were observed around exterior man doors. The seals around the wood windows are also worn from age. The two propane furnaces with split system direct expansion (DX) air conditioning serving the non-garage areas were noted as original. These systems were efficient at the time of construction; however, more energy efficient technology is available today. The systems are controlled by programmable thermostats that are not programmed for setbacks. Domestic hot water (DHW) is provided by a 50-gallon tank-style electric water heater that was installed in January 2020. The DHW piping is uninsulated. Lighting throughout the interior and exterior of the building has been replaced with efficient LED technology. Occupancy sensors have been installed adequately in rooms with infrequent utilization.

The garage is heated by propane unit heaters. There is one thru-wall exhaust fan controlled by a timer located by the workbench. The garage has an efficient engine exhaust removal system³ that filters particulates from the air without exhausting conditioned air from the space. The system is triggered when the garage doors open and runs on a timer currently set to 15 minutes. All vehicles in the garage are plugged in to charge all on board equipment batteries 24/7. Other electric loads in the garage include an air compressor, a residential sized washer and dryer, and a washer and dryer specifically designed for fire fighter gear. The building is occupied at all times, though certain spaces are used more than others.

HISTORICAL ENERGY CONSUMPTION AND BENCHMARKING

The building is served by electricity and propane. Only electric data was available for analysis. The fire station has two electric meters, one for the station and another for the radio tower. Since the data received was already aggregated, it is unknown whether both meters are included in the electric data or not. Figure 5 shows the historical electric use by month for 2020 through 2022. The use profile is consistent with a significant electric baseload and negligible cooling load.

³ <u>http://www.airvac911.com/system.html</u>



FIGURE 5. HISTORICAL ELECTRIC CONSUMPTION: FIRE AND RESCUE STATION

Figure 6 shows historical and benchmark electric EUI. The use of the facility is above the electric benchmark use which indicates the electric data likely includes both the radio tower and fire station metered usage. The EUI is nearly triple that of a typical public order and safety building indicating either the building's electric loads are much greater than similar buildings or there is more floor area served under the meters.

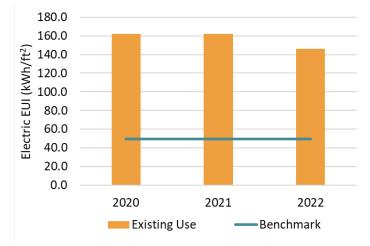


FIGURE 6. HISTORICAL AND BENCHMARK ELECTRIC EUI COMPARISON: FIRE AND RESCUE STATION

The electric use is not related to warmer outside air conditions as shown in Figure 7. As CDDs increase the electric use does not correlate, indicating there is a non-weather dependent cooling use.

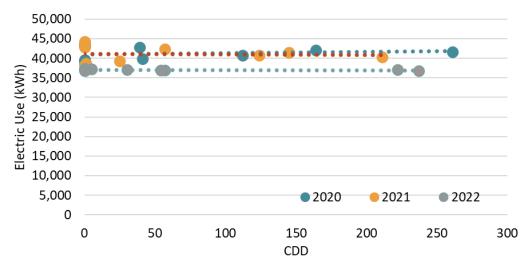


FIGURE 7. ELECTRIC USE COMPARED TO COOLING DEGREE DAYS: FIRE AND RESCUE STATION

Highway Garage

The Highway Garage building was constructed in 2016. Its envelope, lighting, DHW, and HVAC are all modern and efficient for their age. All but one garage bay has radiant floor heating. Heating hot water (HHW) is produced by a wood pellet boiler and distributed by pumps with integrated VFDs. The garage bays have back up propane unit heaters. The thermostats for both systems are programmable although they are set to hold one temperature. The radiant floor thermostats are set to 64°F while the unit heaters are set to 60°F to help raise the temperature in the space when it drops after bay doors are opened. There are multiple exhaust fans and louvers set to run off carbon monoxide levels.

Electric process loads in the building include an air compressor and a welder. The Highway Department is busiest in the winter months for road clearing activities. Operations are generally one shift per day with crews in and out of the building depending on the season and work to be done. The lighting in the garage bays is controlled by manual switches. The work in these areas necessitates that lighting is not shut off for safety, however, manual controls can lead to long periods of lighting runtime when lighting is not switched off before a shift on the roads.

The small office and breakroom area in the building are heated and cooled by a ductless multizone heat pump system. This system has occupancy sensors and a programmable thermostat that is set to hold at 70 degrees. The lighting in the area is controlled by an occupancy sensor.

HISTORICAL ENERGY CONSUMPTION AND BENCHMARKING

The building is served by electricity, wood pellets, and propane. Only electric data was available for analysis. Figure 8 shows the historical electric use by month for 2020 through 2022. The use profile is inconsistent over time. This is reasonable considering that the highway department is as busy as the weather conditions dictate. The greater electric loads in the winter could be indicative of long lighting runtimes during the busy season or the heat pumps running on electric resistance backup heat.

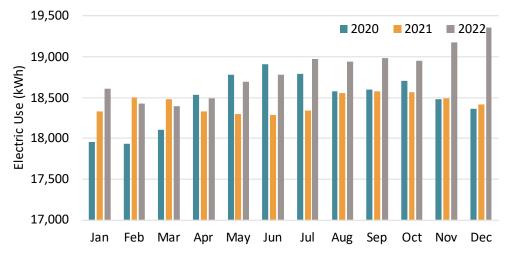
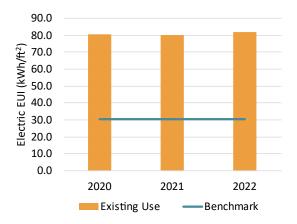



FIGURE 8. HISTORICAL ELECTRIC CONSUMPTION: HIGHWAY GARAGE

Figure 9 shows historical and benchmark electric EUI. The use of the facility is above the electric benchmark use which indicates either long runtime or process loads outside of a typical facility.

FIGURE 9. HISTORICAL AND BENCHMARK ELECTRIC EUI COMPARISON: HIGHWAY GARAGE

The electric use is weakly related to warmer outside air conditions as shown in Figure 10. As CDDs increase the electric use somewhat correlates indicating there is a weak weather-dependent cooling use.

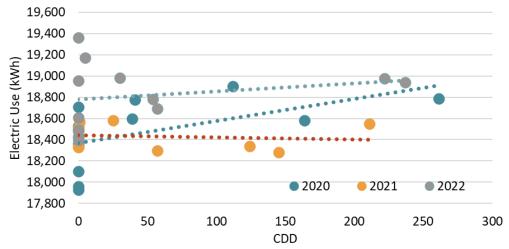


FIGURE 10. ELECTRIC USE COMPARED TO COOLING DEGREE DAYS: HIGHWAY GARAGE

PRELIMINARY ENERGY CONSERVATION MEASURE

ECM-1: Fire Station - Pipe Insulation

The DHW piping in the fire station was bare copper pipe. GDS recommends insulating the DHW piping to decrease heat loss and more efficiently deliver hot water to the building. Due to the relatively low cost of the piping insulation, the payback for this measure is generally low. Insulating bare pipes or pipes with failed insulation will cost-effectively reduce electric use and protect staff from unsafe high-temperature surfaces.

ECM-2: All Buildings - Lighting Upgrades

The majority of the lighting throughout all three buildings has been converted to LED and is controlled efficiently by occupancy sensors. A few non-LED fixtures were noted at the Transfer station. These fixtures have low run hours, however, changing over to LEDs will result in electric savings. Additionally, the Highway Garage has manual controls for the lighting in the garage bays. Infrequent occupancy patterns in this building may lead to long lighting runtimes when the lights are left on after workers leave to do work outside of the building. Installing occupancy sensors or another auto-off device would reduce the runtime of the lighting in the bays when they are not in use.

ECM-3: Fire Station and Transfer Station Weatherization

Small gaps around doors and windows are a source of air infiltration into the building. Air infiltration introduces unconditioned air that increases the load on heating and cooling systems necessary to maintain temperature set points. Weatherization includes installing weatherstripping on doors and windows, caulking gaps in the envelope and air sealing any unnecessary penetrations. GDS recommends conducting a thorough survey of the fire station and Hopper building at the transfer station to identify and address weatherization opportunities that will reduce energy costs.

ECM-4: Transfer Station (Hopper) – Ductless MSHP

The Hopper office is currently heated with an electric resistance baseboard and cooled by a window air conditioning unit. Both systems are inefficient and could be replaced by a ductless mini-split heat pump (MSHP) Heat pumps provide heating and cooling using only electricity and transfer energy from outside using a refrigeration cycle. When considering new high efficiency equipment, ensure the units have the highest SEER, EER, and/or HSPF rating available to maximize energy savings and provide the greatest economic return on the cost.

ECM-5: Fire Station - Ducted ASHP

The Fire Station offices and dormitory are served by aging propane furnaces with DX cooling. Both systems are inefficient by today's standards and could be replaced by a ducted air source heat pump (ASHP) system. Heat pumps provide heating and cooling using only electricity and transfer energy from outside using a refrigeration cycle. When considering new high efficiency equipment, ensure the units have the highest SEER, EER, and/or HSPF rating available to maximize energy savings and provide the greatest economic return on the cost.

ADDITIONAL MEASURES FOR CONSIDERATION

The measures identified in Table 3 below are recommended for future consideration. However, additional information is required to develop estimated costs and any associated benefit.

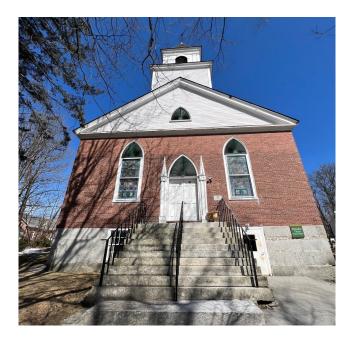
Measure	Location	Summary	Typical Payback (years) ¹
1	Fire Station and Highway Garage	Review Thermostat Scheduling : Programable thermostats are installed in multiple building however, they are not currently programmed with temperature setbacks. Implementing temperature setbacks will save energy by reducing the load during unoccupied periods. Typically, a temperature setback of five degrees can reduce annual energy use by around 15 percent. Confirming thermostat settings match occupancy schedules on a regular basis is also recommended. Frequently, occupants will manually override thermostat setpoints and schedules to address their specific comfort needs and forget to return the settings back to normal. Performing this review on a regular basis will help to maintain occupant comfort and ensure energy savings are realized.	n/a
2	Transfer Station	Programmable Thermostats: Manual thermostats control the waste oil heat in the Recycle building and the electric resistance baseboards in the Hopper office. Installing programable thermostats and implementing temperature setbacks will save energy by reducing the load during unoccupied periods.	1-2
3	Transfer Station and Fire Station	EnergyStar Appliances (end-of-life) : When it comes time to replace residential style appliances like refrigerators or laundry machines, choose high efficiency appliances. Most high-efficiency units can be identified by ENERGY STAR® ratings.	3-4
4	Fire Station	Automatic Battery Charger : All emergency vehicles are plugged in after returning from a call to recharge all batteries on board. They remain connected to power 24/7 until they leave for the next call. Investigating to determine if smart charging systems exist to reduce electric demand when charging is not required, or charge more efficiently is recommended.	4-5
5	Fire Station	Heat Pump Water Heater (end-of-life) ² : Upgrading the existing electric domestic water heater with a heat pump water heater (HPWH) will more efficiently produce hot water. HPWHs reduce energy use by transferring heat from the surrounding space into the water rather than using an electric resistance heating coil. HPWHs provide efficiency ratings that are two to three times an electric resistance unit. As a result of transferring heat from the ambient air, HPWHs provide cool exhaust air	4-5

TABLE 2. SUMMARY OF ADDITIONAL MEASURES FOR CONSIDERATION

		that can be ducted to spaces to offset cooling loads further reducing	
		energy use.	
² These me on the incr	asures are recom	estimate and requires further refinement prior to implementing ECMs for incentive mended when equipment fail or are nearing end of useful life. Potential incentives we erence between code-compliant and high efficiency equipment. Only high efficiency	ould be based

RECOMMENDED NEXT STEPS

GDS will review the identified ECMs with the Town of Henniker to determine which, if any, are of interest to pursue. Once ECMs are selected for implementation, the Town has the following options:


- Solicit proposals from preferred contractors and coordinate with Eversource to submit an NHSaves Custom application.
- Request GDS or preferred engineering vendor perform a Technical Assistance (TA) study which would be cost shared between theh Town of Henniker and Eversource. GDS would coordinate with preferred contractors or existing partners to determine ECM cost, develop custom energy savings analyses, and assist the Town of Henniker with completing NHSaves Custom application and program documentation.

Energy Audit

Funded by

Community Center

57 Main Street

Henniker, NH

November 1, 2023

Table of Contents

Introduction	3
Executive Summary	3-4
Envelope Values & Units	5
Historic Energy Use & Analysis	6-7
Building Description & Brief History	8-9
Floorplan Graphics	10-11
ESM MR-1 and TC-1	12
Heating Loads, Systems, and Controls	13-16
Thermostat Setbacks—Myth Busting	17
ESM MR-2 & TC-2 Exterior Doors	18
ESM TC-3 Foundation Rim Joists	19
ESM MR-3 Ceiling Upgrade	20-21
ESM MR-4 Interior Glazing Panels	22
Inventory of Devices	23
Appendix	
Heat Transfer Basics	24
Elite RHVAC Load Calc Reports	
Existing Conditions	25-32
Improved	33-40
Elite Energy Analysis Report	41-57
Heat Pump Submittals	58-63
Innerglass Ordering Worksheet	64-67
"The Perfect Wall" BSI 001	68-71

Introduction

This Energy Audit has been funded by Eversource. Funds may, or may not, also be available to help reduce cost for eligible Energy Saving Measures (ESM) including weatherization efforts and equipment upgrades.

The purpose of an energy audit is to identify energy saving measures (ESM) in a building. Computer simulated energy models are developed to estimate energy consumption based on the local climate conditions, physical dimensions and characteristics of a building, mechanical systems, presumed lighting, equipment, and occupancy patterns, in addition to a number of other variables.

With the building modeled in existing conditions, energy savings can be estimated for improvements to the thermal envelope and/or more efficient mechanical systems. The cost of those measures can then be analyzed in terms of predicted energy saved and savings potential from converting to different sources of energy. The primary objective is to evaluate the level of investment warranted by energy and dollars saved from those specific measures.

This audit has been prepared with the best of intentions to assist the Town of Henniker make informed decisions regarding energy saving improvements in keeping with long term goals for the property. We do not make any warranty, expressed or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed.

Executive Summary

The Community Center is a historic brick building, originally constructed as a Church, and which consists of two floors. It was purchased by the Town in 2002 and now each floor has its own heating and cooling systems and serves two different purposes. A description of the building and a brief history is on pages 8-9.

The ceiling and foundation walls have some insulation, but the above grade brick walls are not insulated and account for an estimated 43% of the building's heat loss. Insulating to the interior of brick walls is not impossible but complicated and often not recommended. An article about the complexity of masonry walls, by New England's premier building scientist, is included in the Appendix.

Four ESM addressing envelope improvements have been recommended, along with making changes to thermostat settings and other controls. The summary on the next page shows that an estimated total investment of \$8,554 will result in an estimated annual energy savings of \$1,035 in both electricity and propane, based on current energy pricing, and 163 million Btu of source energy.

The upper floor is referred to here as the Meeting Room (MR) and the basement level as the Teen Center (TC). The MR's primary or first stage heating is by (2) propane fired forced warm air furnaces, with a standard air source heat pump (ASHP) as secondary—intended primarily as a quieter source of heating during meetings. The TC has a Hyper Heat ASHP with electric resistance baseboards installed as back up, but were found to be on and serving as primary heating during the site visit. Pages 11-17 go into considerable detail describing the existing systems and how they might be able to be operated or controlled differently to effect energy savings.

Completing the thermal envelope improvements will help both floors rely more on the more efficient heat pumps for heating by making adjustments to thermostat programs and installing programmable thermostats to control the TC's baseboards. Based on the estimated heat loss of that floor, and the published ratings of the heat pump, heating by very costly electric resistance baseboards should be all but eliminated.

Summary of Energy Saving Envelope Measures

The recommended ESM are described in more detail later in this report.

The chart below summarizes the estimated cost of each ESM, estimated annual dollar savings, a simple payback in years, and return on investment (ROI) of each measure based on the service life of the improvement.

ESM #	Energy Saving Measures (ESM)	Cost of Measure	Annual Savings	Simple Payback Years	Life of Measure	Investment Gain	ROI	Annual ROI
MR-1	Put Ceiling Fans on timer	\$175	\$68	2.6	25	\$1,525	871.4%	9.5%
TC-1	Mysa Smart Thermostat	\$1,000	\$297	3.4	25	\$6,425	642.5%	8.4%
MR2/TC-2	Weatherstripping	\$450	\$45	10.0	15	\$225	50.0%	4.1%
TC-3	Rim Joists	\$1,360	\$160	8.5	25	\$2,640	194.1%	4.4%
MR-3	Curved Ceiling Upgrade	\$2,400	\$241	10.0	25	\$3,625	151.0%	3.8%
MR-4	Innerglass	\$3,344	\$224	14.9	25	\$2,256	2256.0%	2.1%
All	TOTALS	\$8,554	\$1,035	8.3	25	\$16,871	197.2%	4.5%

In total, an investment of an estimated \$8,554 is predicted to save over \$1,000 in annual energy costs at the three year average propane cost per gallon, and \$0.13 per kWh. This would result in a simple payback within 8.3 years. Since ESM continue to save energy for the life of each measure, this also results in a minimum annual return on investment (ROI) of 4.5 % over each of the next 25 years. Again, the savings are based on recent average energy prices. If (when) prices increase, so too will the ROI.

This next chart presents the same ESM with resulting annual energy savings from each implemented measure and the annual reduction of CO2 emissions. Potential Eversource incentives are based on energy saved for the cost of the measures. Contact your Eversource representative, Jack Paloulek, to determine if the project is

ESM#	Energy Saving Measures (ESM)	Cost of Measure	LP Gallons Saved	kWh Saved	MMBTU Site Energy Reduction	MMBTU Source Energy Reduction	Tons CO2 Reductions Annually
MR-1	Put Ceiling Fans on timer	\$175		523	1.8	5.9	0.23
TC-1	Mysa Smart Thermostat	\$1,000		2285	7.8	26.0	1.0
MR 2/TC-2	Weatherstripping	\$450	12	192	1.8	3.5	0.2
TC-3	Rim Joists	\$1,360		1231	4.2	14.0	0.5
MR-3	Curved Ceiling Upgrade	\$2,400	854	769	80.6	98.4	5.6
MR-4	Innerglass	\$3,344	116	262	11.5	15.1	0.8
All	TOTALS	\$8,554	982	5262	107.6	163	8

Also recommended is replacing the 21 year old 40 gallon electric water heater with a far more efficient heat pump water heater. Savings will be determined by the amount of water consumed as well as the added benefit of dehumidification from the heat pump—somewhat offset by the space cooling. Utility incentives for equipment are not based on predicted savings but by the efficiency of the selected product.

Assessed Values for The Grange and Other Model Inputs

The thermal envelope is the assembly of materials which form the barrier between inside conditioned space and outdoor weather and climate. Its ability to conserve heat and manage moisture determines, primarily, the heating load or demand of a building. Continuity and thickness of insulation, in direct contact with air barrier, is key to an effective thermal barrier.

Square Feet Area (whole)	4,585	
Volume (ft3) Upper	60,870	
Design Temps	Outdoor Dry	Indoor Dry
Winter	-2	70
Summer	87	75
Reference City	Concord NH	

Summary reports for load calculations of the existing and retrofitted condition has been included at the end of this study. Below is a summary of values for existing and improved envelope components.

Envelope Component	Surface Area FT2	Assessed Effective R-Value	U- Factor	Improved U-factor	Improvement
SP Historic Windows with Ext. Storm	296	1.29	0.78		Inner-Glass
SP Wood Frame 5/4	12	1.1	0.91		
Exterior Wood Door	37	1.85	0.54		Weather-Strip
Exterior Metal Doors	61	2.82	0.35		Weather-Strip
12" Brick Walls, plaster and paint	2412	6.1	0.16		
Framed walls - 2006	264	10.3	0.097		
Basement walls	1335	8.5	0.12	0.091	Dense pack voids
Exposed Foundation & Slab Edge	196	9	0.11		
Rim Joists	160	3	0.33	0.056	3" SPF with intumescent paint
Above Flat Ceilings	1936	42	0.02		
Above Curved Tin Ceiling	600	13.5	0.07	0.02	Blow in or place R38
Volume: 60,870 ft3 Above Grade		Exist		Improved	
CFM Air Leakage Winter		110		80	

Other formulas used in this analysis:

Propane: 91,300 Btu per gallon for site energy Source energy: 104,995 Btu per gallon (1.15xSite)

Electric: 3412 Btu per kWh site energy. Source energy: 11,361 Btu per kWh

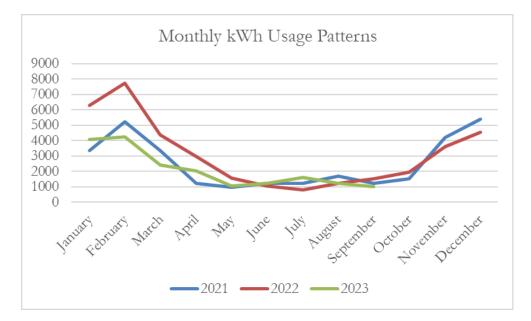
CO2 Emissions:

Propane: 12.35 lbs per gallon

Electric: CO2 lbs = kWh X.89

Heat loss by the thermal envelope component

Historic Energy Use Analysis


Energy	Units	Site Btus	Source Btus	\$Cost
Electric kWh	34,199	116,686,988	388,534,839	\$5,211
Propane	1,281	116,955,300	134,498,595	\$2,176
Totals		233,642,288	523,033,434	\$7,387
EUI KBtu/FT2	5160	45.3	101.4	\$1.43

The energy analysis below is based on the energy data provided for 2022.

The Energy Utilization Index (EUI) offers a simple snapshot analysis of a building's energy use by looking at total amount of energy input (converted to Btu's) divided by the floor area of conditioned space. "Site Energy" refers to units of energy delivered to a site. Source energy includes transmission and some allowance for off site generation and other considerations.

Based on the information provided the Site EUI for 2022 was 45.3 KBtu/ft2 for the whole building. Source EUI was 101.4 KBtu/ft2, with a cost per square foot of \$1.43per ft2 based on current energy prices. Since the per unit cost for energy can vary greatly over time, converting all forms of energy to Btus is a more useful way of looking at a building's energy demands and potential reductions from energy saving measures.

Monthly patterns of electric consumption can sometimes tell a useful story, though assumptions are never as useful as hard facts. Still, it is most likely that the peak consumption pattern in the winter is due to the use of electric heating, especially in the basement where electric resistance (ER) baseboards are used to supplement, or instead of, the one indoor heat pump unit.

Electric heating is estimated to consumer 25,000 kWh, or over 66%, of the annual electric consumption. In addition to the high efficiency of heat pumps, another significant advantage if the potential to generate clean, renewable energy on, or near to, the site of use.

KW Demand and the Cost of Supply

The KW Demand is determined each month by the peak call for power during any 30 minute window within a billing cycle. The total charges for KW Demand in 2022 was \$906, or just over 17% of the total cost for electricity in 2022.

Corresponding with the highest usage of kWh, demand for power was highest in the coldest months of the year, due to space heating. Reducing reliance on the electric baseboards would reduce both demand for power and actual consumption. Heat pumps operate most efficiently when left at a stable thermostat setting.

Reducing electric usage saves energy and monthly costs in both the supply side (actual electricity used) and the delivery side (the very real transmission costs of delivering kWh to the meter, maintaining lines, etc).

Lowering peak demand on the regional grid plays a critical part in reducing the need to build more generation plants. It may be impacted by a reduction in kWh consumption, but is mostly determined by time and the appliance used. Customers are allowed a peak use of 5.0KW each month before incurring charges.

A good explanation about Demand Charges can be found at <u>Making Sense of Demand Charges</u>: <u>What Are They and How</u> <u>Do They Work? - Renewable Energy World</u>

Building Description and Brief History

The one story brick Henniker Community Center was constructed in 1834 as a Church on a large granite block foundation. "The granite was quarried in Henniker, likely by William Smith who obtained the granite from ledge in the eastern part of Henniker."

"The brick walls are laid in the Common or Bond pattern of seven common bond rows and an eight header row. The exact source of the brick is not known...(though) extensive brick making was conducted in Hooksett, the most likely nearby source." A photo from around the 1920's shows the interior walls with likely lathe and plaster finished walls.

Circa 1870's

Thermographic imaging taken for this study indicates large wood framing, still without any insulation against the brick. Adding insulation in the walls would result in a substantially improved thermal envelope and occupancy comfort with significant energy savings. However insulation would also result in colder brick and the risk of degradation of the bricks and mortar from freezing and thawing. The level of risk depends greatly on the type of

brick and mortar—which can only be determined through chemical analysis.

The most effective and risk-free way to dramatically improve the thermal envelope of masonry buildings is to insulate on the exterior of the brick, adding a drainage plane and new exterior brick façade, though this strategy conflicts with current historic preservation goals, of significant interest for this building in particular.

With respect to the goals of energy efficiency and a carbon neutral economy, Dr. Lstiburek's "The Perfect Wall", Building Science Insight 001, is in the appendix.

* Information, and some photos taken, with gratitude, from the Application to the NHDHR, Individual Inventory Form, Completed by Susan Fetzer, August 1, 2023.

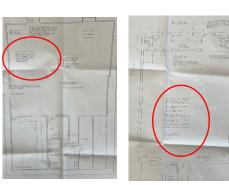
65.5 °F

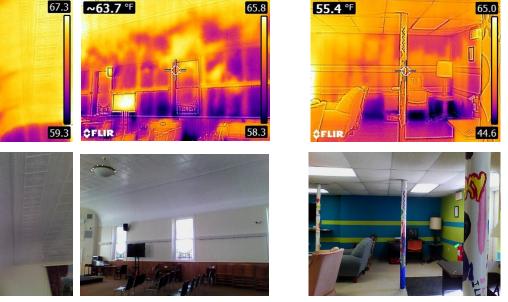
CFLIR

From 1834 till 1969, the building served as a Baptist, then Methodist house of worship on the upper floor with the vestry in the lower, basement level.

Following five years vacancy, it was purchased in 1974 by the Henniker Masonic Association and served as a place for meetings and activities until it was again sold to the Town of Henniker in 2002.

"The sale (to the Town) included three stipulations: the building would be available for use by community organizations without charge, a granite monument with the Masonic emblem would be retained in the building as a representation of its prior use and finally, if the building was ever sold for non-municipal purposes, half the proceeds would be payable to the Masonic Association in Hillsborough."

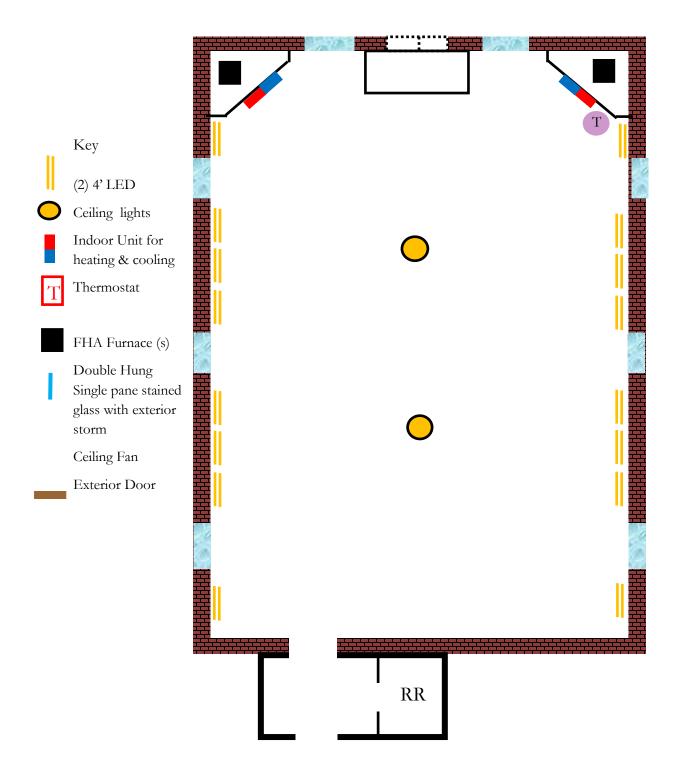

(Application to the NHDHR, Individual Inventory Form, Completed by Susan Fetzer, 8.1.2023)

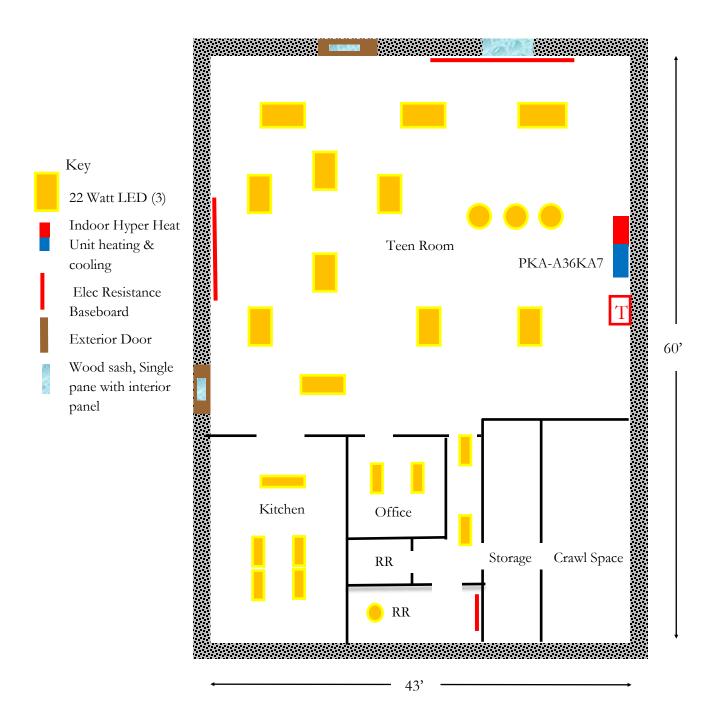

The only drawings available were floor plans made in 2003 by Architectural Link out of Pembroke. Those plans included brief notes regarding insulation.

"remove acoustic ceiling tile and grid, repair existing tin ceiling, blow in insulation over tin ceiling minimum R-value of 38"

Presumably, this was done, though IR images suggest that insulation covering the curvature of the ceiling was minimal at best and offers an opportunity for improvement. There may be access to an attic above the vestibule on the south where the bell rope extends, however accessing the attic was not attempted for this study.

"Typical basement walls: Furr out walls with 1 5/8" metal stud. Allow for 3 1/2" aluminum faced fiberglass insulation. 5/8" FC Gyp Bd, painted finish"


Upper floor walls and ceiling (above) Basement walls (right) show non-continuous fiberglass batts with voids and cold air migration from the floor, indicating a non-continuous air and thermal barrier.


Upper Floor Graphic

Only roughly to scale.

Teen Center-Basement Level

ESM # TC1 and # MR-1

Turning devices off when they are not needed is the simplest and most cost effective way to save energy. In this case, reduce (or eliminate) the number of hours the electric baseboards and ceiling fans run by installing programmable to both controls. Fans can be shut off at least 50% of the time.

Mysa Smart Thermostat for Electric Baseboard Heaters

 $149 \ge 3 = 447$

- 24/7 mobile app control
- Easy heating Schedules
- Voice control/smart home integration
- Premium design
- Temperature/humidity alerts
- In-app energy use monitoring
- Monthly room-by-room energy cost report
- Touch-screen control
- Group your thermostats in zones
- Temperature range 41°-86°F

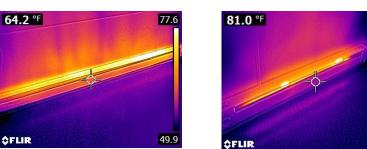
BN-Link 7 Day Programmable in wall Timer Switch for Lights,Fan,s and Motors.\$26..99 Amazon

• Easily set up to 18 on/off programs, each with 7-day options

Replacing the Noisy Dehumidifier with a quieter and more efficient model is recommended.

Midea 50 Pint SmartDry Dehumidifier - \$260.00

- • Energy Star
- • 50 pints/day
- • Smart Phone compatible
- • Built in Pump



55.2

Teen Center Electric Heating

On the day of the CC first site visit, March 27, the outdoor air temperature (OAT) was about 36° F. The heat pump was not running, but all three electric resistance baseboards were on and the indoor air temperature was a comfortable 68°F, though unheated wall surfaces ranged from 52°-58°F. It is impossible to know how the baseboards are controlled, but the presumption is that they are likely relied on more consistently than the heat pumps, possibly because they warm the walls which may provide greater comfort than standing/sitting next to colder walls.

The Bin Analyses below reflects the 30 year average number of hours (for Concord, NH) the OAT falls within 5-degree "bins". It also reflects the estimated heating load for each bin, and whether the heating capacity of the installed heat pump (maximum of 38,000 Btu/hr at 5° OAT) is capable of meeting the heating load without a back up source.

In the top example, the hourly heated load, based on the assessment of the envelope and outdoor temperature, back up heating for the Hyper Heat PUZ-HA36NHA5 would expected to be only needed when the OAT dropped below around -5°F. That means the far more efficient heat pump should be able to maintain indoor ambient temperature for all but about 40 hours a year and the cost to run the back up resistance heat during those hours would be an estimated \$11.

Based on a number of assumptions, it is estimated that the baseboard may be on far more than necessary which could results in an estimated \$500 higher energy bill for the Teen Center.

Energy Audit S.E.E.D.S. Jaffrey, NH 0		Analvsis and Co	et Compariso	•	9				looment. Inc. hergy Analysis Page 9
Bin Ana	lysis R	eport - Sy	stem 3 -	Existing	BASEME	NT. ER C)FF		
Bin Temp	Hours	Heating	Adjusted	Heat Pump	H. Pump	Backup	H.Pump	Backup	Total
Ranges	Per	Load	Load	Output	Run Time	Output	Heating	Heating	Heating
Degree F	Bin	Btuh	(x 0.85)	Btuh	Fraction	Btuh	Cost	Cost	Cost
-20 to -15	1	42,146	35,824	0	0.000	35,824	0.00	1.42	1.42
-15 to -10	18	39,751	33,789	33,789	0.534	33,789	10.56	9.62	20.18
-10 to -5	19	37,357	31,753	31,753	0.836	0	16.46	0.00	16.46
-5 to 0	52	34,962	29.718	29,718	0.782	0	39.86	0.00	39,86
0 to 5	136	32,567	27.682	27,682	0.728	0	92.11	0.00	92.11
5 to 10	154	30,173	25,647	25,647	0.675	0	91.90	0.00	91.90
10 to 15	209	27,778	23,611	23,611	0.621	0	109.45	0.00	109.45
15 to 20	312	25,383	21,576	21,576	0.568	0	142.64	0.00	142.64
20 to 25	385	22,989	19,540	19,540	0.514	0	150.15	0.00	150.15
25 to 30	666	20.594	17.505	17,505	0.461	0	194.82	0.00	194.82
30 to 35	878	18,199	15,469	15,469	0.407	0	206.47	0.00	206.47
35 to 40	650	15,805	13,434	13,434	0.354	0	121.75	0.00	121.75
40 to 45	658	13,410	11,399	11,399	0.300	0	96.57	0.00	96.57
45 to 50	679	11.015	9.363	9,363	0.246	0	76.04	0.00	76.04
50 to 55	619	8,621	7.328	7,328	0,193	0	50.65	0.00	50.65
55 to 60	717	6,226	5,292	5,292	0.139	0	39.74	0.00	39.74
60 to 65	685	3,831	3,257	3,257	0.086	0	21.99	0.00	21.99
Totals:	6,838						\$1,473.60	\$11.04	\$1,484.64

Energy Audit - Energy Analysis and Cost Comparison Elite Software Development. In S.E.E.D.S. Community Center Energy Analy Laffrey. NH 03452 Page									
Bin Ana	lysis F	Report - S	System 1	- Existing	BASEN	IENT			
Bin Temp	Hours	Heating	Adjusted	Heat Pump	H. Pump	Backup	H.Pump	Backup	Total
Ranges	Per	Load	Load	Output	Run Time	Output	Heating	Heating	Heating
Degree F	Bin	Btuh	(x 0.85)	Btuh	Fraction	Btuh	Cost	Cost	Cost
-20 to -15	1	42,146	35,824	0	0.000	35,824	0.00	1.42	1.42
-15 to -10	18	39,751	33,789	0	0.000	33,789	0.00	24.06	24.06
-10 to -5	19	37,357	31,753	0	0.000	31,753	0.00	23.86	23.86
-5 to 0	52	34,962	29,718	0	0.000	29,718	0.00	61.12	61.12
0 to 5	136	32.567	27,682	0	0.000	27.682	0.00	148.91	148.91
5 to 10	154	30,173	25,647	0	0.000	25,647	0.00	156.23	156.23
10 to 15	209	27,778	23,611	0	0.000	23,611	0.00	195.19	195.19
15 to 20	312	25,383	21,576	0	0.000	21,576	0.00	266.27	266.27
20 to 25	385	22,989	19.540	0	0.000	19,540	0.00	297.57	297.57
25 to 30	666	20.594	17.505	17.505	0.461	0	194.82	0.00	194.82
30 to 35	878	18,199	15,469	15,469	0.407	0	206.47	0.00	208.47
35 to 40	650	15,805	13,434	13,434	0.354	0	121.75	0.00	121.75
40 to 45	658	13,410	11,399	11,399	0.300	0	96.57	0.00	96.57
45 to 50	679	11.015	9.363	9.363	0.246	0	76.04	0.00	76.04
50 to 55	619	8.621	7.328	7.328	0,193	0	50.65	0.00	50.65
55 to 60	717	6,226	5,292	5,292	0.139	0	39.74	0.00	39.74
60 to 65	685	3,831	3,257	3,257	0.086	0	21.99	0.00	21.99
Totals:	6,838	1.	 A second sec second second sec	20 C	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	64 (1997) (1997) (1997)	\$814.90	\$1,174.64	\$1,989.53

Upper Floor Heating and Cooling

GENERAL FEATURES • Slim wall-mounted indoor units provide zone comfort control • The outdoor unit powers the indoor unit, and should a power outage occur, the system is automatically restarted when power returns • Multiple fan speed options: Quiet, Low, Medium, High, Super-high, Auto • Multiple control options available: - Hand-held Remote Controller (provided with unit) - kumo cloud® smart device app for remote access - Third-party interface options - Wired or wireless controllers • Hot-Start Technology: no cold air rush at equipment startup or when restarting after Defrost Cycle • Quiet operation • Smart Set: recalls a preferred preset temperature setting at the touch of a button

The multi-split heat pumps installed in the Community Room were intended to supplement the two propane condensing furnaces, located in each corner closet. The furnace blowers make too much noise to be used during meetings so the quiet heat pumps offer more acceptable heating.

Based on the assessed envelope, the estimated hourly 'peak' heat loss is just over 61,000 Btu with a temperature difference of 72 degrees between inside and outside. The capacity of each propane fired furnace is not available, but each of them likely has an output capacity greater than 61,000 Btu/hr.

Getting into the mathematical weeds a bit:

The overall average heat transmission of a building's thermal envelope is calculated by the u factors and gross surface area of each different component (UA).

Based on the assessment conducted in this study, the UA is an estimated 857 Btu/hr. The chart below reflects the heat loss at varying OAT when the indoor temperature is 70°F.

Turning to the stated heating capacities of the outdoor compressor (heat	OAT⁰F
pump) installed for the meeting room, (bottom chart) the maximum	60
capacity at 17° is 35,000 Btu/hr. But the heat loss of the meeting room at	55
17 °is 45,421Btu/hr. In other words, the heat pump won't be able to re-	50
place the hourly heat loss at that OAT.	47
We don't know what the heat pump capacities are exactly at different	40

We don't know OAT, but its fair to assume that, based on the assessment and the chart to the right, it should be able to be effective at heating the space down to at least 30° OAT when the heat loss is less than 35,000 Btu/hr.

At a temperature difference of 40° degrees between inside and outside air temperature (40° AT), ie when its 70° inside and 30° outdoor air temp (OAT), the hourly heat loss is less than 35,000Btu (857 x 40 = 34280).

The efficiency of heat pumps is referred to as the Coefficient of Performance (COP). That is how many kWh worth of heat is moved for every kWh consumed. Since a kWh has 3412Btus, a COP of 2.45 means that 8,359 Btu is made available for space heating. To compare the cost of heating with propane vs heat pumps, we look at how many units of energy is required for one million Btu worth of heating.

1,000,000 / 8,359 = 119 kWh (at a COP of 2.45) 119 kWh x \$.13 per kWh = \$15.47 per million Btu

It takes about 12 gallons of LP in these furnaces to create a million Btu—so LP costs \$17.52 per million Btu.

In sum: at current energy prices, it is less expensive to maintain the Meeting Room at 70° with the heat pumps till the OAT drops below 30 degrees, then rely on the propane units.

	Max Capacity	Range Capacity	Rated Input	Efficiency	
MXZ 8C48NA	BTU/H	BTU/H	Watts	COP	
Heating at 47° OAT	54,000	22,500-54,000	4220/4990	3.75	
Heating at 17° OAT	35,000	36,000	3,720	2.45	
Heating at 5° OAT					
Cut out OAT				-4	
	Max Capacity	Range	Rated Input		
Cooling	BTU/H	BTU/H	Watts		
	48,000	15,500-48,000	4,000-5,050		

Teen Center (Basement) Heating and Cooling

Outdoor Unit

MITSUBISHI
SPLIT-SYSTEM HEAT PUMP <+>
CONFORMS TO Anslut STD. 1995 Centre of the state and the s
MODEL PUZ-HA36NHA5 SERVICE REF. PUZ-HA36NHA5
UNIT SUPPLY 2013 PHAGE HG MAX.VOLTAGE 253 UNIT SUPPLY 20120 1 60 MIN.VOLTAGE 198 APPROVED FOR HACR BREAKERS OR TIME DELAY FUSES. BREAKER 30 AMPS
MAX.FUSE 40 AMPS MIN.CIRCUIT AMPACITY 28
FAN MOTOR 0.4+0.4 86+86 SCCR 5kA COMPRESSOR 18 27.5
COMPRESSOR 10 27.5 REFRIGERANT R410A FACTORY CHARGED 12 LBS. 2 OZ. IF THE LIQUID LINE EXCEEDS 100 FT., PLUS 3 OZ. PER ADDITIONAL 5FT. LIQUID LINE. INSTALLER TO MARK: TOTAL CHARGE LBS. OZ.
DESIGN PRESSURES PSIG 550 HI SIDE 330 LO SIDE *SUITABLE FOR OUTDOOR INSTALLATION.
VEGIGHT 265 LBS. SERIAL NO. 04/05/34C YEAR OF MANUFACTURE 2020.04 MITSUBISHI ELECTRIC CORPORATION MADE IN JAPAN DWG NO. BIT/SINT86033
I manual second s
SPLIT- SYSTEM HEAT PUMP
MODEL <u>PKA-A36KA7</u> <h> CONTINUE OF A CONTINU</h>
UNIT SUPPLY 2023 10 MAXVOLTAGE 233 MIX VOLTAGE 192 APPROVED FOR HACK BREAKERS OR TIME DELAY FUSES. MAKTISE 12 AMPS MIN CAT AMPARTY 1 AN ANOTOR 0.53 * 500 PERFORMEMENT RING DESIGN PRESSURES 8.01 PSIG MI SIDE 300 PSIG LO SIDE * THIS UNIT IS NITENED ONLY FOR FREE-AIR DISCMARGE
YEAR OF MANUFACTURE 2020. 01 SERIAL NO. 01M00292 MITSUBISHI ELECTRIC CORPORATION MADE INTRALIND DWG. NO. VG79J405H03

The heat pump for the basement is different. It relies on electric resistance as a back up so the unit selected was a "Hyper Heat" meaning it has greater capacities at lower OAT and it will always be less expensive to rely on maintaining 70° from the heat pump for heating, with no weekday set backs.

Calculated peak heat loss: 34,643 Btu/hr

PUZ-HA36NHA5 H2i Hyper Heat Production 2007- Retired

Manufactured Aril 2020 Refrigerant R410A

Serial # 04U05734C

• Variable speed INVERTER-driven compressor

• High heating capacity: flash injection circuit maintains 100% heating capacity at 5°F outdoor temperature

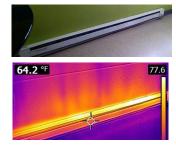
• Wide heating range: heating performance down to -13°F (average of 80% heating capacity)

• High speed heating at start up: Hyper-Heating INVERTER® reduces the time for heating at start up by about half compared to standard models

• Suction accumulator pre-charged with refrigerant volume for piping length up to 100 ft.

 \bullet Twinning of two indoor units possible with the 36 kBTU/H model

• High pressure/temperature protection


INDOOR UNIT FEATURES

- Sleek, compact design
- Simple installation
- Vane setting for air flow direction control
- Auto fan speed mode

	Max	Rated	Rated	Efficiency
	BTU/H	BTU/H	Watts	COP
Heating at 47° OAT	40,000	38,000	3410	3.26
Heating at 17° OAT	38,000	25,000	3330	1.85
Heating at 5° OAT	38,000		6760	1.65
	Max Ca-	Rated Ca-	Rated	SEER
Cooling	33,500	33,500	2790	16.2
Moisture Removal	8.7	pints/hr		

Data from Mitsubishi Submittal

Three electric resistance (ER) baseboards, for a total of 20 linear feet) provide heating of the walls via both convection and radiant heat transfer. Where as heat pumps which transfer heat through compression and a refrigerant, ER generates heat at an efficiency of about .99% or a COP of less than 1. That means every kWh generates about 3378 Btu, (\$38.48 per million Btu) where as the heat pump moves between 11,123 and 5,600 Btu per kWh (\$11.68-\$23.14 per MMBtu).

Thermostat Set Backs

There is a bit of controversy around whether setting a thermostat to a lower temperature saves energy or not. Two common myths:

1. "Thermostat setbacks during the winter won't save you money. Any energy you saved when the thermostat was turned down will be lost because of the amount of fuel the furnace needed to get you back to a comfortable level."

2. "Setting your thermostat back will save energy, but no more than four degrees." (or 6 or some set number)

The reality is that lowering the indoor air temperature through thermostat setbacks for fuel burning equipment almost always saves heating energy because one of the factors of heat transfer is the temperature difference between inside and outside (aka delta T or Δ T): the lower the Δ T, the slower the rate of heat transfer, therefore heat loss is reduced. While its true that a furnace or boiler will run longer to bring the temperature back up to comfort levels, fossil fuel (and biomass) equipment operates more efficiently when it keeps running as opposed to turning on and off multiple times. For those two reasons, the energy saved from lower setbacks will *almost* always be more than the energy used to bring it back up to temperature. NOTE: This does NOT apply to variable speed heat pumps which operate most efficiently when left at one temperature.

But it is especially true for single stage oil fired equipment which is 'oversized'. That is when its hourly BTU output capacity far exceeds the hourly heat loss. Ideally, peak capacity will equal peak heat lost—ie the BTU/hr heat loss during the coldest hour of the location's winter, occurring 99% of the time on average. But non-modulating furnaces and boilers are frequently oversized—but as much as 50-150%. So when it comes on to satisfy the thermostat setting, it puts out a lot of heat, likely turns off fairly quickly, then on again minutes later. This on and off again is referred to as 'short cycling' and it results in low seasonal efficiency. (There are other maintenance reasons for short cycling, including a damaged flame sensor and dirty or misaligned air filters, so regular maintenance and inspections and can keep a furnace performing as efficiently as possible.)

But when a building is unoccupied overnight or for days at a time, keeping the thermostat set back means that the boiler will be off for many if not most of the winter hours, then run at its highest efficiency to recover.

All that said, there are other considerations with thermostat set backs, especially in a building with minimal insulation levels. As surfaces cool, there is a risk of condensation forming if surface temperatures drop below the dew point, though with low interior humidity, this should be a very low risk. The other common consideration is preventing the risk of freezing pipes on exterior walls, though again, this should not be an issue in the Communi-ty Center as long as the baseboard in the meeting room restroom is left on to 45 degrees.

There is likely an 'optimal' set back temperature for the propane and oil systems in these buildings. But it is unique to each building based on the thermal performance of the envelope and which will vary for each hour as the delta T varies. I've asked contractors who recommend specific set back temperatures, why they pick 4° or 6° or whatever and the response has usually been something on the order of "because its complicated and customers won't understand. They just want simple instructions."

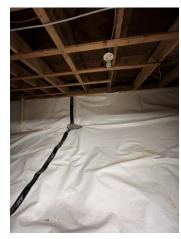
The mission of S.E.E.D.S. is based on the principle that to transition to a low energy, carbon neutral economy, people, as consumers, deserve to at least be offered the opportunity to understand the complexities of physics as they relate to our energy usage. For more information, check out the links below.

https://cbe.berkeley.edu/research/setpoint-energy-savings-calculator/

https://www.energyvanguard.com/blog/if-you-think-thermostat-setbacks-don-t-save-energy-you-re-wrong/ https://www.thisoldhouse.com/heating-cooling/21016013/how-thermostat-setbacks-save-money

ESM # MR-2 & TC-2

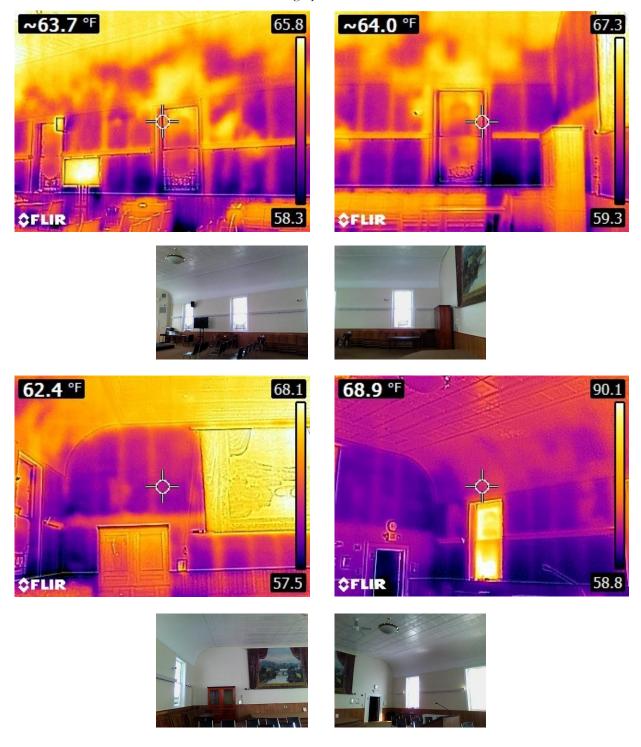
The south facing door to the Teen Center is in worse functional condition and has larger air gaps than the wood door above. Again, adding weather-stripping is a cost effective energy saving improvement, but this door is rusting and hard to open and close and, in my opinion, replacing it with a new insulated door would be a priority over the historic door above it.

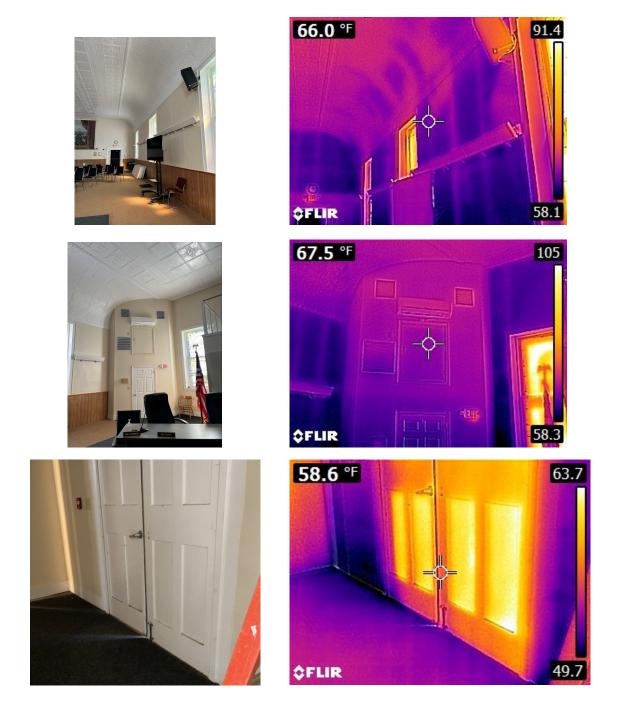

ESM # TC-3

This vapor barrier was installed at some point, presumably to reduce moisture loads from exposed earth or rock. Reducing moisture loads does reduce the amount of vapor that needs to be extracted by a dehumidifier so does save energy. But even greater savings—and load reductions—can result from insulating rim & band joists, foundation walls, and even floors.

The recommendation is to spray 3" closed cell foam into all accessible rim/band joists (an estimated 160 ft2 here and above suspended ceiling tiles) and onto this membrane from the top of the foundation to 2-3 sloped feet below grade. Also spray at bottom plate of interior wall IF/SO to create a continuous vapor barrier. An intumescent paint needs to be applied over the foam to meet a 15 minute flame barrier, per code.

Where possible via raising suspended ceiling tiles, blow in mineral wool insulation into bays with voids or compromised fiberglass batts. Mineral wool is recommended over cellulose as it resists moisture from potential condensation on cold granite.





Upper Level Meeting Room—ESM #MR-3

Thermographic (aka Infra Red or IR) images depict differences in surface temperatures. Darker colors indicate cooler surfaces than brighter colors. Dark "blobs" or streaks can indicate cold air leaking into the building on a cold day, or washing through low density insulation such as fiberglass. Though in this case, the voids or uninsulated and narrow wall cavities reflect the highly conductive cold brick of the exterior walls.

There are apparently plans to replace the double wood paneled door. The most cost effective upgrade would be to install commercial grade weather-stripping to close the gaps around the edges and reduce cold air infiltration. It is true that the door itself has a relatively low resistance to conductive heat transfer (ie low R-value). Even on this cold day in March, the solar gains are actually contributing BTUs into the vestibule. But its also the case that the heat loss of all four exterior doors in the building only accounts for about 5% of the total heat loss. This means that replacing the door will save energy, but the cost vs savings would result in a very long payback, where as just sealing the gaps of all doors for a fraction of the cost would yield greater savings than replacing this door.

ESM # MR-4 Interior Glazing Units

Exterior storm windows do reduce the amount of heat loss through windows to a certain extent, by adding an air space between the single pane of glass and storm. Importantly, they also serve to protect historic window frames and glass. But they do not stop air infiltration because they need 'weep holes' to allow drainage of condensation that forms.

As restoring historic wood windows becomes increasingly popular, many companies now offer a variety of interior options which are less expensive than full replacements and often as, or more, effective at reducing heat loss.

Interior glazing panels are a very effective option. They can be custom made with wood for \$800-\$2,000, OR a non wood unit can be custom ordered on line and easily installed for less than \$300. In this case, a compression fitting unit is estimated to cost \$418 per window.

They can be single units and easily removed, or double hung, and left in place.

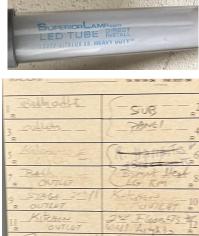
The statements below were copied in part from stormwindows.com and reference Innerglass Windows specifically, though many of the statements describe any quality interior glazing panel. Advantages include:

- Uses a concealed stainless steel springing system that requires no all-around track. It conforms to the window opening, automatically compensating for most out of square conditions.
- Custom made to your window dimensions, we can fit any window, no matter how crooked!
- Significantly more effective at insulating your home and lowering your heating and cooling bills than traditional exterior storm windows.
- Much tighter than exterior storms, because outside storm windows must be ventilated (you know, the weep holes) to get rid of the condensation that has already happened.
- So tight it provides a vapor barrier on the warm side that stops condensation in the first place.

Innerglass Window Systems pioneered the use of high performance Low-E glass in our interior storm windows. Low-E glass doubles the R value of regular glass making you warmer in the winter and cooler in the summer. It also cuts out 2/3 of the ultra-violet rays that damage your rugs and furniture.

https://stormwindows.com/index.php/storm-windows-how-to-order/

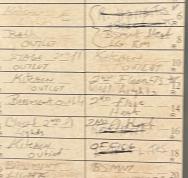
Innerglass	U.I / FT2	Per	Per Unit	# Units	Cost
Compression Unit	152	\$2.75	\$418.00	8	\$3,344


Inventory of Electric Appliances



2278/4'/VX/D.I. - IS/PS EMENT FOR F3278 LAMPS ONLY ELECTRONIC T8 BALLASTS ONLY L48T8/850/22W-EB

Power Nom.: Input Voltage: Input Frequency: Input Current: 250mA E466424



SOURRE D COMPRNY

The Basics of Heat Transfer in a Building

Heat moves in three basic ways in a building: Conduction, convection, and radiation.

Heat **conducts** to coolth or cold in any direction and through physical contact of materials. Insulation can slow the rate of heat loss to the outside. The rate at which it moves is determined by the type and thickness of material and the temperature difference between inside and outside. Compare holding a ceramic mug of hot water vs a glass of hot water, vs a glass of cold water. The skin of your hand will be heated—or cooled—based on the conductivity of the mug, glass, and the temperature difference of the water and your hand.

In a building in our climate, heat moves, or 'is lost' to the outside as it moves from inside heated space to the colder outside through an assembly of materials. For the walls, the assembly may consist of plaster or sheet-rock, brick, or wood framing with insulation in cavities (or not), exterior board sheathing, wood clapboards, or perhaps a thin layer of insulation and vinyl siding. The rate of heat loss varies with the difference between the inside temperature and outside temperature. That is why setting the thermostat back to 55 degrees when the building is unoccupied saves energy; because the rate of heat loss is slowed.

Heat can also be transferred through air or water by **convection**. While heat moves to cold via conduction, warmer air rises because it is lighter, or less dense, than cooler air. This means that insulation can only work well if it doesn't allow air to pass through it. The other way to say it is: Insulation needs to be in contact with an air barrier on all sides to perform as expected. Weatherstripping around doors and windows, for example, can stop cold air infiltration which, when warmed, rises to the ceiling and exfiltrates through any cracks or gaps in the ceiling material.

Insulation is usually described by its R-value, or resistance to allow heat transfer. But R-value doesn't tell the whole story because it only refers to conductive heat loss and doesn't consider convection. Manufactures of insulation test their products in a laboratory by placing it, fully lofted, in a perfectly sealed box, and measure the rate that heat moves from one side to the other to determine what "R-Value" to stamp on the product to be sold. If its not installed in exactly the same way, that R-value has very little meaning.

The third way heat moves is by **radiation**. This happens through space and from a warmer source to cooler surface in visual contact. Think of feeling the warmth of the sun and the immediate difference when a cloud blocks it. The sun still warms the earth surfaces and surrounding air, but direct radiation can be blocked—or shaded. Same thing with a wood stove. A hot stove warms air, but its greatest impact is by radiation which is only felt when one is in visible contact. And the further away, the less heat is felt. Its often tempting to replace windows because we feel so cold when next to them! That's because our body heat radiates to the cold surface. Insulated shades or quilts stops that radiative loss (but also eliminates view and daylight). Interior glazing panels can make a big difference for single pane windows because the air space raises the surface temperature of the inside glass.

In reality, all three mechanisms happen at the same time, though one usually dominates the others in terms of how much heat is moved. The role of heating system is to replace the heat that is lost through the envelope. This is described or measured as replacing BTU per hour (BTU/hr). If the heating system (electric baseboard, heat pump, oil or propane furnace or boiler, etc...) creates or moves more heat (BTU) in an hour than in lost to the outside, the system is considered "over-sized" which can waste energy unnecessarily. On the other hand, if the system cannot generate or move enough heat to replace what is lost in any given hour, the system is "undersized" and will not be able to maintain warm enough inside temperatures for human comfort. So correct sizing is important, most especially in systems which cannot modulate the heat output.

Hopkinton Community Center EXISTING HVAC Load Calculations

for

Town Of Henniker

Henniker NH 03242

Prepared By:

Margaret Dillon S.E.E.D.S.

603-532-8979 Tuesday, October 31, 2023

Rhvac is an ACCA approved Manual J, D and S computer program. Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

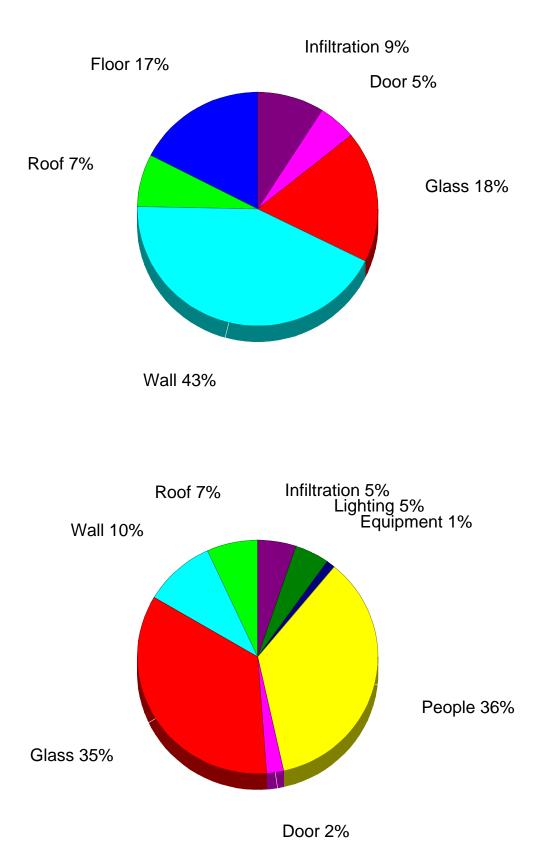
hvac - Residential & Light .E.E.D.S. affrey, NH 03452	Commerc	cial HVAC Load	s 🚺				Software Development, Inc community Center EXISTIN Page
Project Report							
eneral Project Informat	ion						
roject Title:			unity Center E	XISTING			
roject Date:		esday, Octobe					
Client Name: Client City:		vn Of Hennike nniker NH 032					
Company Name:		E.D.S.	.42				
company Representative		rgaret Dillon					
company Phone:		3-532-8979					
company E-Mail Addres	s:						
esign Data							
eference City:				P, New Ha			
uilding Orientation:				faces Nort	h		
aily Temperature Rang atitude:	e:		High 43 Degrees				
levation:			43 Degrees 42 ft.				
ltitude Factor:		0.9					
(Dutdoor	Outdoor	Outdoor	Indoor	Indoor	Grains	
[<u>)ry Bulb</u>	Wet Bulb	<u>Rel.Hum</u>	<u>Rel.Hum</u>	<u>Dry Bulb</u>	Difference	
Vinter:	-2	-2.6	n/a	n/a	70	n/a	
ummer:	87	70	43%	50%	75	19	
heck Figures					<u> </u>		
otal Building Supply CF			2,003		er Square ft		0.437
quare ft. of Room Area olume (ft ³):			4,585 0,870	Square	ft. Per Ton		1,011
uilding Loads		-	-,				
otal Heating Required I	ncluding	Ventilation Air		3 Btuh	95.713		
otal Sensible Gain:			,	3 Btuh	80		
otal Latent Gain:	a ali i ali a ai N	(antilation Aim	,	8 Btuh	20		
otal Cooling Required I	ncluding	ventilation All	. 54,40	1 Btuh	4.53	Tons (based	On Sensible + Latent)
lotes							
hvac is an ACCA appro							
alculations are perform						anual D.	
Il computed results are sure to select a unit the select a unit the select as a select a select a select as a sel						nufacturar'a a	orformanco data at
our design conditions.	nat meets		e and latent loa	us accordir	ig to the ma	nulacturers pe	enormance data at
our acoign conaitions.							

Miscellaneous Report

INISCENTIEUUS NO	ρυπ						
System 1 Existing		Outdoor	Outdoor	Outdoo	r Indoor	Indoor	Grains
Input Data	[Dry Bulb	Wet Bulb	Rel.Hun	n Rel.Hum	Dry Bulb	Difference
Winter:		-2	-2.6	80%	n/a	70	n/a
Summer:		87	70	43%	50%	75	18.65
Duct Sizing Inputs							
	Main Trunk			<u>Runouts</u>			
Calculate:	Yes			Yes			
Use Schedule:	Yes			Yes			
Roughness Factor:	0.00300			0.01000			
Pressure Drop:	0.1000	in.wg./10)0 ft.	0.1000 in.v	vg./100 ft.		
Minimum Velocity:	0	ft./min		0 ft./i	min		
Maximum Velocity:	900	ft./min		750 ft./i	min		
Minimum Height:	0	in.		0 in.			
Maximum Height:	0	in.		0 in.			
Outside Air Data							
		Winter		Summe	<u>er</u>		
Infiltration Specified:		0.108	AC/hr	0.10	8 AC/hr		
-		110	CFM	11	0 CFM		
Infiltration Actual:		0.108	AC/hr	0.10	8 AC/hr		
Above Grade Volume:	Х	60.870		X 60.87			
		6,600	Cu.ft./hr	6,60	0 Cu.ft./hr		
	Σ	0.0167		X 0.016	7		
Total Building Infiltration:		110	CFM	11	0 CFM		
Total Building Ventilation:		0	CFM		0 CFM		
-							
System 1							
Infiltration & Ventilation S			: 13.04		88 X 12.00 Sumr		ence)
Infiltration & Ventilation La			12.52		88 X 18.65 Grain		
Infiltration & Ventilation S				$= (1.10 \times 0.9)$	88 X 72.00 Winte	er Temp. Differer	ice)
Winter Infiltration Specifie		3 AC/hr (1					
Summer Infiltration Speci	fied: 0.108	3 AC/hr (1	10 CFM)				

Load Preview Report

t Ser Loss	I HIC	g Clg	Sys Act	Duct
	-		CFM	Size
1 95,713	3 1,259	9 2,003	2,003	
1 95,713	3 1,259	9 <mark>2,003</mark>	2,003	18x18
1 95,713	3 1,259	9 <mark>2,003</mark>	2,003	18x18
9 61,070	0 803	3 <mark>1,642</mark>	1,642	157
2 34,643	3 456	6 <mark>361</mark>	361	46
	1 95,71 1 95,71 9 61,07	1 95,713 1,259 1 95,713 1,259 1 95,713 1,259 9 61,070 803	1 95,713 1,259 2,003 1 95,713 1,259 2,003 9 61,070 803 1,642	1 95,713 1,259 2,003 2,003 1 95,713 1,259 2,003 2,003 9 61,070 803 1,642 1,642


Total Building Summary Loads

Total Bullding Summary Loads					
Component	Area	Sen	Lat	Sen	Tota
Description	Quan	Loss	Gain	Gain	Gai
P with Storm: Glazing-Historic windows refurbished with	295.7	16,608	0	18,408	18,40
good exterior storms, U-value 0.78, SHGC 0.65					
A-cw-o: Glazing-Single pane, operable window, clear,	12	778	0	471	47
wood frame, U-value 0.9, SHGC 0.64	07.4	4 45 4	0	204	20
1G: Door-Wood - Panel, U-value 0.54	37.4	1,454	0	364	36
1N: Door-Metal - Polystyrene Core, U-value 0.35	21.8	548	0	137	13
Ietal with glass: Door-Wide metal doors with small window, U-value 0.67	61.2	2,952	0	738	73
Brick 12": Wall-Block, Custom, Historic 12" brick walls,	2412.2	27,789	0	3,628	3,62
lathe&plaster, U-value 0.16		21,100	Ũ	0,020	0,02
2B-0bw: Wall-Frame, R-11 insulation in 2 x 4 stud	264	1,844	0	120	12
cavity, no board insulation, brick finish, wood studs,		.,•	Ū		
U-value 0.097					
Block with R9: Wall-Block, Custom, Granite foundation	1334.8	11,532	0	1,505	1,50
steel studs and 3.5 fg batts, U-value 0.12			-	.,	.,
R-38 spec.: Roof/Ceiling-Roof Joists Between Roof Deck	1936	3,625	0	856	85
and Ceiling or Foam Encapsulated Roof Joists,		- /	-		
Custom, Blow in over tin ceiling. min R-38, U-value					
0.026					
Blopes.Poor: Roof/Ceiling-Under Attic with Insulation on	600	3,326	0	2,864	2,86
Attic Floor (also use for Knee Walls and Partition					
Ceilings), Custom, Slopes Fiberglass, U-value 0.077					
2A-pm: Floor-Slab on grade, No edge insulation, no	196	16,652	0	0	
insulation below floor, any floor cover, passive, heavy					
dry or light wet soil, U-value 1.18					
Subtotals for structure:		87,108	0	29,091	29,09
People:	45	07,100	9,000	10,350	19,35
Equipment:	10		500	125	62
Lighting:	740		000	2,523	2,52
Ductwork:	1.10	0	0	2,020	_,0_
Infiltration: Winter CFM: 110, Summer CFM: 110		8,605	1,378	1,434	2,81
Ventilation: Winter CFM: 0, Summer CFM: 0		0,000	0	0	_,01
Total Building Load Totals:		95,713	10,878	43,523	54,40
Check Figures					
Total Building Supply CFM: 2,003	CEM	Per Square ft	•		0.437
Square ft. of Room Area: 4,585		re ft. Per Ton:			1,011
Volume (ft ³): 60,870	Cque				.,
Building Loads	710 Durk	05 740	MDU		
	713 Btuh	95.713			
	523 Btuh	80			
Total Latent Gain: 10,	878 Btuh	20		On Sonaible	L otoot
Total Cooling Deguined Including Ventilation Aim					
Total Cooling Required Including Ventilation Air: 54, Notes	401 Btuh	4.53	Tons (Based	I ON Sensible	+ Latent)

Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

All computed results are estimates as building use and weather may vary.

Be sure to select a unit that meets both sensible and latent loads according to the manufacturer's performance data at your design conditions.

Detailed Room Loads - Room 1 - Upper Meeting Room (Average Load Procedure)

Þ

General							
Calculation Mode:	Htg. & clg.		Occurrences:			1	
Room Length:	59.0 ft.		System Numb	ber:		1	
Room Width:	41.0 ft.		Zone Number:		1		
Area:	2,419.0 sq.ft.		Supply Air:		1,642 CFM		
Ceiling Height:	18.0 ft.		Supply Air Ch			2.3 AC/ł	
Volume:	43,542 cu.ft.		Req. Vent. Cl			0 CFN	
Number of Registers:	15		Actual Winter	Vent.:		0 CFN	1
Runout Air:	109 CFM		Percent of Su	pply.:		0 %	
Runout Duct Size:	7 in.		Actual Summe	er Vent.:		0 CFN	1
Runout Air Velocity:	410 ft./mir	۱.	Percent of Supply:		0 %		
Runout Air Velocity:	410 ft./mir	۱.	Actual Winter Infil.:		75 CFM		
Actual Loss:	0.087 in.wg	./100 ft.	Actual Summe	er Infil.:		75 CFN	1
Item	Area	-U-	Htg	Sen	Clg	Lat	Sen
Description	Quantity	Value	HTM	Loss	HTM	Gain	Gain
E -Wall-Brick 12" 59 X 13	656.1	0.160	11.5	7,559	1.5	0	987
S -Wall-Brick 12" 41 X 16	544.7	0.160	11.5	6,275	1.5	0	819
W -Wall-Brick 12" 59 X 16	833.1	0.160	11.5	9,598	1.5	0	1,253
N -Wall-Brick 12" 25 X 16	378.2	0.160	11.5	4,357	1.5	0	569
N -Wall-12B-0bw 33 X 8	264	0.097	7.0	1,844	0.5	0	120
S -Door-11G 5.5 X 6.8	37.4	0.540	38.9	1,454	9.7	0	364
N -Door-11N 3.2 X 6.8	21.8	0.350	25.2	548	6.3	0	137
E -GIs-SP with Storm shgc-0.65 0%S (3)	110.9	0.780	56.2	6,228	70.3	0	7,791
S -GIs-SP with Storm shgc-0.65 0%S (2)	73.9	0.780	56.2	4,152	38.2	0	2,826
W -GIs-SP with Storm shgc-0.65 0%S (3)	110.9	0.780	56.2	6,228	70.3	0	7,791
UP-Roof-R-38 spec. 60 X 30	1800	0.026	1.9	3,370	0.4	0	796
UP-Ceil-Slopes.Poor 60 X 10	600	0.077	5.5	3,326	4.8	0	2,864
UP-Roof-R-38 spec. 17 X 8	136	0.026	1.9	255	0.4	0	60
Subtotals for Structure:				55,194		0	26,377
Infil.: Win.: 75.1, Sum.: 75.1	3,031		1.939	5,876	0.323	941	979
People: 200 lat/per, 230 sen/per:	30					6,000	6,900
Lighting:	420						1,432
Room Totals:				61,070		6,941	35,688

Detailed Room Loads - Room 2 - Basement Level (Average Load Procedure)

General								
Calculation Mode:	Htg. & clg.		Occurrences:			1		
Room Length:	57.0		System Numb	ber:		1		
Room Width:	38.0		Zone Number	r:		1		
Area:	2,166.0		Supply Air:			361 CFM		
Ceiling Height:	8.0		Supply Air Ch	anges:		1.2 AC/hr		
Volume:	17,328	cu.ft.	Req. Vent. Cl	g:		0 CFM		
Number of Registers:	4	4 Actual Winter Vent.:				0 CFM		
Runout Air:	90	CFM	Percent of Su	ipply.:		0 %		
Runout Duct Size:		in.	Actual Summ			0 CFM		
Runout Air Velocity:		ft./min.	Percent of Su			0 %		
Runout Air Velocity:		ft./min.	Actual Winter			35 CFM		
Actual Loss:	0.134	in.wg./100 ft.	Actual Summ	er Infil.:		35 CFM		
Item	Are		Htg	Sen	Clg	Lat	Sen	
Description	Quanti		HTM	Loss	HTM	Gain	Gain	
E -Wall-Block with R9 40 X 8	289		8.6	2,500	1.1	0	326	
S -Wall-Block with R9 38 X 8	261			2,258	1.1	0	295	
W -Wall-Block with R9 40 X 8		20 0.120		2,765	1.1	0	361	
E -Wall-Block with R9 20 X 4		30 0.120		691	1.1	0	90	
W -Wall-Block with R9 20 X 4		30 0.120		691	1.1	0	90	
N -Wall-Block with R9 38 X 8	30			2,627	1.1	0	343	
E -Door-Metal with glass 4.5 X 6.8				1,476	12.1	0	369	
S -Door-Metal with glass 4.5 X 6.8				1,476	12.1	0	369	
S -GIs-1A-cw-o shgc-0.64 0%S		0.900		778	39.3	0	471	
Floor-22A-pm 196 ftPer.	19	96 1.180	85.0	16,652	0.0	0	0	
Subtotals for Structure:				31,914		0	2,714	
Infil.: Win.: 34.9, Sum.: 34.9	1,40)8	1.938	2,729	0.323	437	455	
People: 200 lat/per, 230 sen/per:		15				3,000	3,450	
Equipment:						500	125	
Lighting:	32	20					1,091	
Room Totals:				34,643		3,937	7,835	
Equipment Cooling Loads								
	Continuous	Continuous						
	Output	Output		Dor	cent	Sensible	Latent	
	Sensible	Latent			Jsed	Load	Load	
Item Name	Btuh	Btuh	Outpu			Btuh	Btuh	
Miscellaneous Equipment	125	0	000000000000000000000000000000000		100	125	0	
Moisture loads	0	500	100		100	0	500	
	0	500	100			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

Total

500

125

Hopkinton Community Center IMPROVED HVAC Load Calculations

for

Town Of Henniker

Henniker NH 03242

Prepared By:

Margaret Dillon S.E.E.D.S.

603-532-8979 Tuesday, October 31, 2023

Rhvac is an ACCA approved Manual J, D and S computer program. Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

Rhvac - Residential & Light S.E.E.D.S. Jaffrey, NH 03452	Commercial HVAC Lo	ads				ftware Development, Inc. munity Center IMPROVED Page 2
Project Report						
General Project Information Project Title: Project Date: Client Name: Client City: Company Name: Company Representative Company Phone: Company E-Mail Address	Hopkinton Com Tuesday, Octol Town Of Henni Henniker NH 0 S.E.E.D.S. : Margaret Dillon 603-532-8979	ker 3242	IPROVED			
Design Data Reference City: Building Orientation: Daily Temperature Range Latitude: Elevation: Altitude Factor:		Concord A Front door High 43 Degrees 342 ft.).988				
	Outdoor Outdoor ry Bulb Wet Bulb -2 -2.6 87 70	Rel.Hum	Indoor <u>Rel.Hum</u> n/a 50%	Indoor <u>Dry Bulb</u> 70 75	Grains <u>Difference</u> n/a 19	
Check Figures Total Building Supply CFN Square ft. of Room Area: Volume (ft ³):	М:	1,638 4,585 60,870		er Square ft ft. Per Ton:		0.357 1,184
Building Loads Total Heating Required In Total Sensible Gain: Total Latent Gain: Total Cooling Required In	Ū.	35,589 10,878	9 Btuh 9 Btuh 3 Btuh 7 Btuh	82.729 77 23 3.87	% %	n Sensible + Latent)
Notes Rhvac is an ACCA approv Calculations are performe All computed results are e Be sure to select a unit th your design conditions.	ed per ACCA Manua estimates as building	I J 8th Edition, Ve use and weather	ersion 2, an r may vary			formance data at

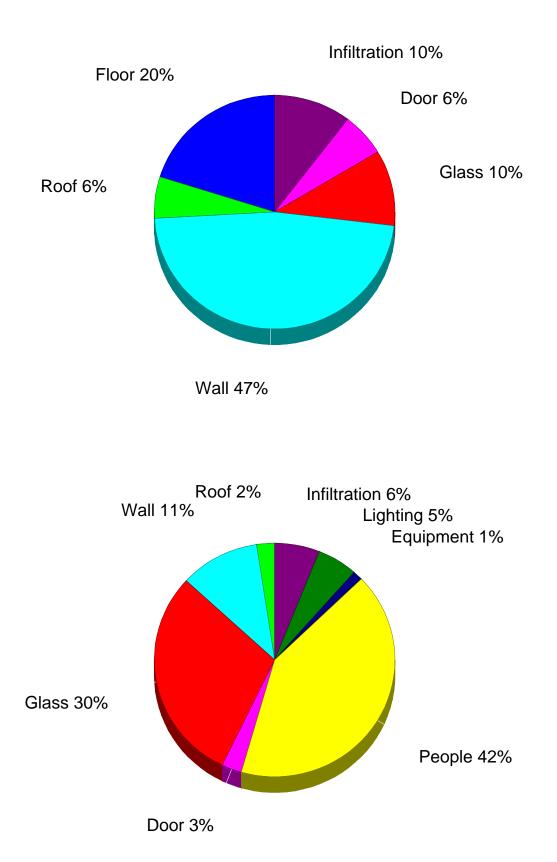
Miscellaneous Report

Miscellarieous M	sport						
System 1 Existing		Outdoor	Outdoor	Outdoor	· Indoor	Indoor	Grains
Input Data	[Dry Bulb	Wet Bulb	Rel.Hum	Rel.Hum	Dry Bulb	Difference
Winter:		-2	-2.6	80%		70	n/a
Summer:		87	70	43%	50%	75	18.65
Duct Sizing Inputs							
	<u>Main Trunk</u>			<u>Runouts</u>			
Calculate:	Yes			Yes			
Use Schedule:	Yes			Yes			
Roughness Factor:	0.00300			0.01000			
Pressure Drop:		in.wg./10)0 ft.	0.1000 in.w			
Minimum Velocity:		ft./min		0 ft./n			
Maximum Velocity:		ft./min		750 ft./n	nin		
Minimum Height:		in.		0 in.			
Maximum Height:	0	in.		0 in.			
Outside Air Data							
		<u>Winter</u>		<u>Summe</u>			
Infiltration Specified:			AC/hr		3 AC/hr		
		110	CFM	110) CFM		
Infiltration Actual:		0.108	AC/hr	0.108	3 AC/hr		
Above Grade Volume:	X	60,870	Cu.ft.	<u>X 60,870</u>	<u>)</u> Cu.ft.		
		6,600	Cu.ft./hr	6,600) Cu.ft./hr		
	Σ	<u>(0.0167</u>		<u>X 0.0167</u>	<u>7</u>		
Total Building Infiltration:		-	CFM) CFM		
Total Building Ventilation	:	0	CFM	() CFM		
System 1			10.51				`
Infiltration & Ventilation S					88 X 12.00 Summ		ence)
Infiltration & Ventilation L			12.52		88 X 18.65 Grains		`
Infiltration & Ventilation S				$= (1.10 \times 0.98)$	88 X 72.00 Winter	i emp. Ditteren	ce)
Winter Infiltration Specifie		3 AC/hr (1					
Summer Infiltration Spec	mea: 0.108	3 AC/hr (1	10 CFM)				

Load Preview Report

Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss	Sys Htg CFM	Sys Clg CFM	Sys Act CFM	Duct Size
Building	3.87	1,184	4,585	35,589	10,878	46,467	82,729	1,088	1,638	1,638	
System 1	3.87	1,184	4,585	35,589	10,878	46,467	82,729	1,088 <mark></mark>	1,638	1,638	14x19
Zone 1			4,585	35,589	10,878	46,467	82,729	1,088 <mark></mark>	1,638	1,638	14x19
1-Upper Meeting Room			2,419	28,021	6,941	34,962	50,139	659	1,290	1,290	127
2-Basement Level			2,166	7,568	3,937	11,505	32,590	429	348	348	46

Total Building Summary Loads


Component		rea	Sen	Lat	Sen	Tota
Description		lan	Loss	Gain	Gain	Gai
listoric St & IP: Glazing-Historic single pane with exterior storms and interior glazing panels, U-value 0.37, SHGC 0.5	29	5.7	7,880	0	13,340	13,34
A-cw-o: Glazing-Single pane, operable window, clear, wood frame, U-value 0.9, SHGC 0.64		12	778	0	471	47
1G: Door-Wood - Panel, U-value 0.54	3	7.4	1,454	0	364	36
1N: Door-Metal - Polystyrene Core, U-value 0.35	2	1.8	548	0	137	13
Ietal with glass: Door-Wide metal doors with small window, U-value 0.67	6	1.2	2,952	0	738	73
rick 12": Wall-Block, Custom, Historic 12" brick walls, lathe&plaster, U-value 0.16	241	2.2	27,789	0	3,628	3,62
2B-0bw: Wall-Frame, R-11 insulation in 2 x 4 stud cavity, no board insulation, brick finish, wood studs, U-value 0.097	2	264	1,844	0	120	12
lock with R9: Wall-Block, Custom, Granite foundation steel studs and 3.5 fg batts, U-value 0.09	95	0.8	6,161	0	805	80
lock with R9: Wall-Block, Custom, Granite foundation steel studs and 3.5 fg batts, U-value 0.12	3	884	3,318	0	433	43
8-38 spec.: Roof/Ceiling-Roof Joists Between Roof Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, Blow in over tin ceiling. min R-38, U-value 0.026	25	536	4,748	0	1,121	1,12
2A-pm: Floor-Slab on grade, No edge insulation, no insulation below floor, any floor cover, passive, heavy dry or light wet soil, U-value 1.18		96	16,652	0	0	
Subtotals for structure:			74,124	0	21,157	21,15
People:		45	,	9,000	10,350	19,35
Equipment:				500	125	62
_ighting:	7	40			2,523	2,52
Ductwork:			0	0	0	
nfiltration: Winter CFM: 110, Summer CFM: 110			8,605	1,378	1,434	2,81
Ventilation: Winter CFM: 0, Summer CFM: 0			0	0	0	
Total Building Load Totals:			82,729	10,878	35,589	46,46
Check Figures						
Total Building Supply CFM: 1,638			Square ft			0.357
Square ft. of Room Area:4,585Volume (ft³):60,870	S	quare ft	. Per Ton:			1,184
Building Loads						
	,729 Bt	uh	82.729	MBH		
	,589 Bt	uh	77			
Total Latent Gain: 10	,878 Bt	uh	23	%		
	,467 Bt		3.87	Tons (Based	d On Sensible	+ Latent)
Notes						

Rhvac is an ACCA approved Manual J, D and S computer program.

Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

All computed results are estimates as building use and weather may vary.

Be sure to select a unit that meets both sensible and latent loads according to the manufacturer's performance data at your design conditions.

Detailed Room Loads - Room 1 - Upper Meeting Room (Average Load Procedure)

General							
Calculation Mode:	Htg. & clg.		Occurrences:			1	
Room Length:	59.0 ft.		System Numb	er:		1	
Room Width:	41.0 ft.		Zone Number	:		1	
Area:	2,419.0 sq.ft.		Supply Air:		1,290 CFM		
Ceiling Height:	18.0 ft.		Supply Air Ch	anges:	1.8 AC/hr		
Volume:	43,542 cu.ft.		Req. Vent. Cl			0 CFM	
Number of Registers:	12		Actual Winter	Vent.:		0 CFN	1
Runout Air:	107 CFM		Percent of Su	pply.:		0 %	
Runout Duct Size:	7 in.		Actual Summe	er Vent.:		0 CFN	1
Runout Air Velocity:	402 ft./mir	า.	Percent of Su	pply:		0 %	
Runout Air Velocity:	402 ft./mir	า.	Actual Winter	Infil.:		75 CFN	
Actual Loss:	0.083 in.wg	./100 ft.	Actual Summe	er Infil.:		75 CFN	1
Item	Area	-U-	Htg	Sen	Clg	Lat	Sen
Description	Quantity	Value	HTM	Loss	HTM	Gain	Gain
E -Wall-Brick 12" 59 X 13	656.1	0.160	11.5	7,559	1.5	0	987
S -Wall-Brick 12" 41 X 16	544.7	0.160	11.5	6,275	1.5	0	819
W -Wall-Brick 12" 59 X 16	833.1	0.160	11.5	9,598	1.5	0	1,253
N -Wall-Brick 12" 25 X 16	378.2	0.160	11.5	4,357	1.5	0	569
N -Wall-12B-0bw 33 X 8	264	0.097	7.0	1,844	0.5	0	120
S -Door-11G 5.5 X 6.8	37.4	0.540	38.9	1,454	9.7	0	364
N -Door-11N 3.2 X 6.8	21.8	0.350	25.2	548	6.3	0	137
E -Gls-Historic St & IP shgc-0.5 0%S (3)	110.9	0.370	26.6	2,955	51.3	0	5,685
S -GIs-Historic St & IP shgc-0.5 0%S (2)	73.9	0.370	26.6	1,970	26.7	0	1,970
W -Gls-Historic St & IP shgc-0.5 0%S (3)	110.9	0.370	26.6	2,955	51.3	0	5,685
UP-Roof-R-38 spec. 60 X 30	1800	0.026	1.9	3,370	0.4	0	796
UP-Roof-R-38 spec. 60 X 10	600	0.026	1.9	1,123	0.4	0	265
UP-Roof-R-38 spec. 17 X 8	136	0.026	1.9	255	0.4	0	60
Subtotals for Structure:				44,263		0	18,710
Infil.: Win.: 75.1, Sum.: 75.1	3,031		1.939	5,876	0.323	941	979
People: 200 lat/per, 230 sen/per:	30					6,000	6,900
Lighting:	420					•	1,432
Room Totals:				50,139		6,941	28,021

Detailed Room Loads - Room 2 - Basement Level (Average Load Procedure)

General									
Calculation Mode:	Htg. & clg.		Occurrences:			1			
Room Length:	57.0		System Numb	per:		1			
Room Width:	38.0		Zone Number	r:		1			
Area:	2,166.0		Supply Air:			348 CFM			
Ceiling Height:	8.0		Supply Air Ch	nanges:		1.2 AC/hr	•		
Volume:	17,328	cu.ft.	Req. Vent. Cl	g:		0 CFM			
Number of Registers:	4		Actual Winter			0 CFM			
Runout Air:	87	CFM	Percent of Su	ipply.:		0 %			
Runout Duct Size:	-	in.	Actual Summ			0 CFM			
Runout Air Velocity:		ft./min.	Percent of Su	ipply:		0 %			
Runout Air Velocity:		ft./min.	Actual Winter			35 CFM			
Actual Loss:	0.125	in.wg./100 ft.	Actual Summ	er Infil.:		35 CFM			
Item	Are	a -U-	Htg	Sen	Clg	Lat	Sen		
Description	Quanti	ty Value	HTM	Loss	HTM	Gain	Gain		
E -Wall-Block with R9 40 X 8	289	.4 0.090	6.5	1,875	0.8	0	245		
S -Wall-Block with R9 38 X 8	261	.4 0.090	6.5	1,694	0.8	0	221		
W -Wall-Block with R9 40 X 8	32		6.5	2,074	0.8	0	271		
E -Wall-Block with R9 20 X 4	8	0.090	6.5	518	0.8	0	68		
W -Wall-Block with R9 20 X 4		0.120	8.6	691	1.1	0	90		
N -Wall-Block with R9 38 X 8	30	0.120	8.6	2,627	1.1	0	343		
E -Door-Metal with glass 4.5 X 6.8	30,	.6 0.670	48.2	1,476	12.1	0	369		
S -Door-Metal with glass 4.5 X 6.8			48.2	1,476	12.1	0	369		
S -GIs-1A-cw-o shgc-0.64 0%S		2 0.900	64.8	778	39.3	0	471		
Floor-22A-pm 196 ftPer.	19	1.180	85.0	16,652	0.0	0	0		
Subtotals for Structure:				29,861		0	2,447		
Infil.: Win.: 34.9, Sum.: 34.9	1,40	8	1.938	2,729	0.323	437	455		
People: 200 lat/per, 230 sen/per:	1	5				3,000	3,450		
Equipment:						500	125		
Lighting:	32	20					1,091		
Room Totals:				32,590		3,937	7,568		
Equipment Cooling Loads									
	Continuous	Continuous							
	Output	Output	Average	e Pe	rcent	Sensible	Latent		
	Sensible	Latent	In-Use		Jsed	Load	Load		
Item Name	Btuh	Btuh	Outpu	t per	Hour	Btuh	Btuh		
Miscellaneous Equipment	125	0	100)	100	125	0		
Majatura laada	0	500	100	h	100	0	500		

500

100

100

0

Moisture loads Total

125 500

500

0

Community Center Energy Analysis Energy Cost Analysis

for

Town Of Henniker

Henniker NH 03242

Prepared By:

Margaret Dillon S.E.E.D.S.

603-532-8979 Tuesday, October 31, 2023

S.E.E.D.S. Jaffrey, NH 03452	nalysis and Cost Comparison	ŀ	Elite Software Development, Inc. Community Center Energy Analysis Page 2
Project Information			· • • • • • • • • • • • • • • • • • • •
Project Title: Designed By: Project Date: Project Comment:	Community Center Energy Analysis Monday, October 30, 2023	Company Name: Company Rep.: Company Address: Company City:	S.E.E.D.S. Margaret Dillon
Client Name: Client Address: Client City: Client Phone: Client Fax: Client Comment:	Town Of Henniker Henniker NH 03242	Company Phone: Company Fax: Company Comment:	603-532-8979
Cooling Equipment	System 1		
Model Type: Model Number: Capacity:	Air Source Heat Pump 36,000 Btuh		
Efficiency:	16.2 SEER		
Heating Equipment Model Type: Model Number:	System 1 Air Source Heat Pump		
Capacity: Efficiency:	36,000 Btuh 10 HSPF		
System Description:	Existing BASEMENT		
Cooling Equipment	System 2		
Model Type: Model Number:	Air Source Heat Pump		
Capacity: Efficiency:	36,000 Btuh 16.2 SEER		
Heating Equipment Model Type: Model Number:	System 2 Air Source Heat Pump		
Capacity: Efficiency:	36,000 Btuh 10 HSPF		
System Description:	Existing BASEMENT. ER OFF		
Cooling Equipment	System 3		
Model Type: Model Number:	Air Source Heat Pump		
Capacity: Efficiency:	36,000 Btuh 16.2 SEER		
Heating Equipment Model Type:	System 3 Air Source Heat Pump		
Model Number: Capacity: Efficiency:	36,000 Btuh 10 HSPF		
System Description:	Improved BASEMENT. ER OFI	=	
Cooling Equipment	System 4		
Model Type: Model Number:	Air Source Heat Pump		
Capacity: Efficiency:	48,000 Btuh 18.9 SEER		

Energy Audit - Energy Analy S.E.E.D.S. Jaffrey, NH 03452	vsis and Cost Comparison	Elite Software Development, Inc. Community Center Energy Analysis Page 3
Heating Equipment	System 4	
Model Type: Model Number:	Air Source Heat Pump	
Capacity:	100,000 Btuh	
Efficiency:	11.4 HSPF	
System Description:	Existing Community Room	
Cooling Equipment	System 5	
Model Type: Model Number:	Air Source Heat Pump	
Capacity:	48,000 Btuh	
Efficiency:	18.9 SEER	
Heating Equipment	System 5	
Model Type: Model Number:	Air Source Heat Pump	
Capacity:	100,000 Btuh	
Efficiency:	11.4 HSPF	
System Description:	Improved Community Room	

Project Summary

General Project Information

General Project Inform	nation		
Project Title: Project Date: Client Name: Client City:	Community Center Energy Analysis Monday, October 30, 2023 Town Of Henniker Henniker NH 03242	Company Name: Company Rep: Company Phone: Company E-Mail Address:	S.E.E.D.S. Margaret Dillon 603-532-8979
Design Data			
Building Area: People: Occupancy:	4,585 sq.ft. 45 0	Cooling Load: Heating Load: Loads Adj. Factor: AC On Temp.:	58,155 Btuh 95,957 Btuh 0.85 0 °F
Actual City: Weather Ref. City:	Concord AP, New Hampshire Concord, New Hampshire		
Summer Outdoor: Summer Indoor: Cooling Hours:	87 °F 75 °F 775	Winter Outdoor: Winter Indoor: Degree Days:	-3 °F 70 °F 7,471

Annual Operating Cost Estimate

	Fuel	Total	Total	Water	Domes.	Annual	Total	Average
System	Rates	Heating	Cooling	Heating	Energy	Service	Oper.	Monthly
Description	Set	Cost	Cost	Cost	Cost	Charges	Cost	Cost
Existing BASEMENT	1	\$1,971	\$76	\$60	\$902	\$0	\$3,010	\$251
Existing BASEMENT. ER OFF	1	\$1,485	\$77	\$60	\$902	\$0	\$2,524	\$210
Improved BASEMENT. ER OFF	1	\$1,384	\$74	\$11	\$831	\$0	\$2,300	\$192
Existing Community Room	1	\$2,519	\$236	\$0	\$0	\$0	\$2,755	\$230
Improved Community Room	1	\$2,071	\$194	\$0	\$0	\$0	\$2,264	\$189

Monthly Costs - System 1 - Existing BASEMENT

Monthly System Cost

	Coolin	g	Heatin	g	Applian	ces	Hot Wa	ter	Total			
Month	Cost	%	Cost	%	Cost	%	Cost	%	Cost			
January	\$0.00	0.0%	\$466.77	85.3%	\$75.18	13.7%	\$5.01	0.9%	\$546.96			
February	\$0.00	0.0%	\$353.66	81.5%	\$75.18	17.3%	\$5.01	1.2%	\$433.85			
March	\$0.00	0.0%	\$252.18	75.9%	\$75.18	22.6%	\$5.01	1.5%	\$332.37			
April	\$0.66	0.4%	\$100.86	55.5%	\$75.18	41.4%	\$5.01	2.8%	\$181.71			
May	\$7.06	5.2%	\$48.98	36.0%	\$75.18	55.2%	\$5.01	3.7%	\$136.22			
June	\$17.10	14.4%	\$21.15	17.9%	\$75.18	63.5%	\$5.01	4.2%	\$118.45			
July	\$24.93	21.7%	\$9.76	8.5%	\$75.18	65.4%	\$5.01	4.4%	\$114.88			
August	\$18.98	16.0%	\$19.18	16.2%	\$75.18	63.5%	\$5.01	4.2%	\$118.36			
September	\$6.21	4.9%	\$39.96	31.6%	\$75.18	59.5%	\$5.01	4.0%	\$126.36			
October	\$1.09	0.7%	\$81.94	50.2%	\$75.18	46.1%	\$5.01	3.1%	\$163.22			
November	\$0.00	0.0%	\$160.01	66.6%	\$75.18	31.3%	\$5.01	2.1%	\$240.20			
December	\$0.00	0.0%	\$416.93	83.9%	\$75.18	15.1%	\$5.01	1.0%	\$497.12			
Total	\$76.03	2.5%	\$1,971.38	65.5%	\$902.18	30.0%	\$60.13	2.0%	\$3,009.72			

Monthly Fuel Usage and Cost									
	Electr	Electricity		Natural Gas		Propane		Fuel Oil	
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons	
January	\$546.96	4,051.6	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
February	\$433.85	3,213.7	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
March	\$332.37	2,462.0	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
April	\$181.71	1,346.0	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
May	\$136.22	1,009.1	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
June	\$118.45	877.4	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
July	\$114.88	850.9	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
August	\$118.36	876.7	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
September	\$126.36	936.0	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
October	\$163.22	1,209.0	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
November	\$240.20	1,779.3	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
December	\$497.12	3,682.4	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
Total	\$3,009.72	22,294.2	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	

Average Electric Cost Per kWh:	\$0.135/kWh
Total annual cooling load energy:	9,123,300 BTU
Total annual heating load energy:	102,687,560 BTU

Monthly Costs - System 2 - Existing BASEMENT. ER OFF

Informing System Cost									
	Coolin	g	Heating		Appliances		Hot Water		Total
Month	Cost	%	Cost	%	Cost	%	Cost	%	Cost
January	\$0.00	0.0%	\$299.97	78.9%	\$75.18	19.8%	\$5.01	1.3%	\$380.16
February	\$0.00	0.0%	\$247.84	75.6%	\$75.18	22.9%	\$5.01	1.5%	\$328.03
March	\$0.00	0.0%	\$194.60	70.8%	\$75.18	27.4%	\$5.01	1.8%	\$274.79
April	\$0.67	0.4%	\$97.66	54.7%	\$75.18	42.1%	\$5.01	2.8%	\$178.53
May	\$7.12	5.2%	\$49.43	36.1%	\$75.18	55.0%	\$5.01	3.7%	\$136.74
June	\$17.27	14.5%	\$21.35	18.0%	\$75.18	63.3%	\$5.01	4.2%	\$118.81
July	\$25.16	21.8%	\$9.85	8.5%	\$75.18	65.3%	\$5.01	4.3%	\$115.20
August	\$19.16	16.1%	\$19.36	16.3%	\$75.18	63.3%	\$5.01	4.2%	\$118.71
September	\$6.27	4.9%	\$40.33	31.8%	\$75.18	59.3%	\$5.01	4.0%	\$126.79
October	\$1.10	0.7%	\$82.69	50.4%	\$75.18	45.8%	\$5.01	3.1%	\$163.98
November	\$0.00	0.0%	\$139.76	63.5%	\$75.18	34.2%	\$5.01	2.3%	\$219.96
December	\$0.00	0.0%	\$281.82	77.8%	\$75.18	20.8%	\$5.01	1.4%	\$362.01
Total	\$76.75	3.0%	\$1,484.64	58.8%	\$902.18	35.7%	\$60.13	2.4%	\$2,523.71

Monthly Fuel Usage and Cost								
	Elect	ricity	Natural Gas		Prop	ane	Fue	l Oil
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons
January	\$380.16	2,816.0	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
February	\$328.03	2,429.8	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
March	\$274.79	2,035.5	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
April	\$178.53	1,322.4	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
May	\$136.74	1,012.9	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
June	\$118.81	880.1	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
July	\$115.20	853.3	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
August	\$118.71	879.4	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
September	\$126.79	939.2	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
October	\$163.98	1,214.7	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
November	\$219.96	1,629.3	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
December	\$362.01	2,681.6	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
Total	\$2,523.71	18,694.1	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0

Average Electric Cost Per kWh:	\$0.135/kWh
Total annual cooling load energy:	9,210,100 BTU
Total annual heating load energy:	103,633,160 BTU

Monthly Costs - System 3 - Improved BASEMENT. ER OFF

	Coolin	g	Heating		Appliances		Hot Water		Total
Month	Cost	%	Cost	%	Cost	%	Cost	%	Cost
January	\$0.00	0.0%	\$279.61	79.9%	\$69.28	19.8%	\$0.88	0.3%	\$349.77
February	\$0.00	0.0%	\$231.02	76.7%	\$69.28	23.0%	\$0.88	0.3%	\$301.17
March	\$0.00	0.0%	\$181.39	72.1%	\$69.28	27.5%	\$0.88	0.3%	\$251.55
April	\$0.65	0.4%	\$91.04	56.3%	\$69.28	42.8%	\$0.88	0.5%	\$161.84
May	\$6.90	5.6%	\$46.07	37.4%	\$69.28	56.3%	\$0.88	0.7%	\$123.12
June	\$16.72	15.7%	\$19.90	18.6%	\$69.28	64.9%	\$0.88	0.8%	\$106.77
July	\$24.36	23.5%	\$9.18	8.9%	\$69.28	66.8%	\$0.88	0.8%	\$103.69
August	\$18.55	17.4%	\$18.05	16.9%	\$69.28	64.9%	\$0.88	0.8%	\$106.75
September	\$6.07	5.3%	\$37.59	33.0%	\$69.28	60.9%	\$0.88	0.8%	\$113.81
October	\$1.06	0.7%	\$77.08	52.0%	\$69.28	46.7%	\$0.88	0.6%	\$148.30
November	\$0.00	0.0%	\$130.28	65.0%	\$69.28	34.6%	\$0.88	0.4%	\$200.43
December	\$0.00	0.0%	\$262.70	78.9%	\$69.28	20.8%	\$0.88	0.3%	\$332.85
Total	\$74.30	3.2%	\$1,383.92	60.2%	\$831.30	36.1%	\$10.52	0.5%	\$2,300.05

Monthly Fuel Usage and Cost									
	Elect	ricity	Natural Gas		Prop	ane	Fue	Fuel Oil	
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons	
January	\$349.77	2,590.9	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
February	\$301.17	2,230.9	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
March	\$251.55	1,863.3	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
April	\$161.84	1,198.8	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
May	\$123.12	912.0	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
June	\$106.77	790.9	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
July	\$103.69	768.1	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
August	\$106.75	790.7	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
September	\$113.81	843.1	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
October	\$148.30	1,098.5	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
November	\$200.43	1,484.7	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
December	\$332.85	2,465.5	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	
Total	\$2,300.05	17,037.4	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	

Average Electric Cost Per kWh:	\$0.135/kWh
Total annual cooling load energy:	8,916,375 BTU
Total annual heating load energy:	96,602,104 BTU

Monthly Costs - System 4 - Existing Community Room

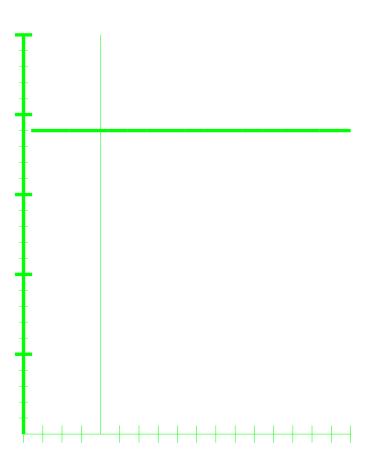
montany bystem bost									
	Coolin	g	Heating		Applian	ces	Hot Water		Total
Month	Cost	%	Cost	%	Cost	%	Cost	%	Cost
January	\$0.00	0.0%	\$509.43	100.0%	\$0.00	0.0%	\$0.00	0.0%	\$509.43
February	\$0.00	0.0%	\$416.74	100.0%	\$0.00	0.0%	\$0.00	0.0%	\$416.74
March	\$0.00	0.0%	\$355.41	100.0%	\$0.00	0.0%	\$0.00	0.0%	\$355.41
April	\$2.06	1.3%	\$158.96	98.7%	\$0.00	0.0%	\$0.00	0.0%	\$161.02
May	\$21.90	22.2%	\$76.65	77.8%	\$0.00	0.0%	\$0.00	0.0%	\$98.55
June	\$53.09	61.8%	\$32.87	38.2%	\$0.00	0.0%	\$0.00	0.0%	\$85.96
July	\$77.37	83.5%	\$15.30	16.5%	\$0.00	0.0%	\$0.00	0.0%	\$92.67
August	\$58.92	66.4%	\$29.80	33.6%	\$0.00	0.0%	\$0.00	0.0%	\$88.72
September	\$19.27	23.1%	\$64.13	76.9%	\$0.00	0.0%	\$0.00	0.0%	\$83.40
October	\$3.38	2.4%	\$138.18	97.6%	\$0.00	0.0%	\$0.00	0.0%	\$141.56
November	\$0.00	0.0%	\$244.78	100.0%	\$0.00	0.0%	\$0.00	0.0%	\$244.78
December	\$0.00	0.0%	\$476.71	100.0%	\$0.00	0.0%	\$0.00	0.0%	\$476.71
Total	\$235.98	8.6%	\$2,518.97	91.4%	\$0.00	0.0%	\$0.00	0.0%	\$2,754.95

Monthly Fuel Usage and Cost								
	Elect	ricity	Natura	al Gas	Prop	ane	Fuel Oil	
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons
January	\$35.21	260.8	\$0.00	0.0	\$474.23	280.6	\$0.00	0.0
February	\$45.66	338.3	\$0.00	0.0	\$371.08	219.6	\$0.00	0.0
March	\$82.63	612.1	\$0.00	0.0	\$272.77	161.4	\$0.00	0.0
April	\$118.40	877.0	\$0.00	0.0	\$42.62	25.2	\$0.00	0.0
May	\$93.95	695.9	\$0.00	0.0	\$4.60	2.7	\$0.00	0.0
June	\$85.96	636.8	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
July	\$92.67	686.5	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
August	\$88.72	657.2	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
September	\$75.91	562.3	\$0.00	0.0	\$7.49	4.4	\$0.00	0.0
October	\$100.62	745.4	\$0.00	0.0	\$40.93	24.2	\$0.00	0.0
November	\$110.37	817.6	\$0.00	0.0	\$134.41	79.5	\$0.00	0.0
December	\$44.86	332.3	\$0.00	0.0	\$431.84	255.5	\$0.00	0.0
Total	\$974.97	7,222.0	\$0.00	0.0	\$1,779.98	1,053.2	\$0.00	0.0

Average Electric Cost Per kWh:	\$0.135/kWh
Average Propane Cost Per Gallon:	\$1.690/Gallon
Total annual cooling load energy:	33,037,476 BTU
Total annual heating load energy:	181,021,552 BTU

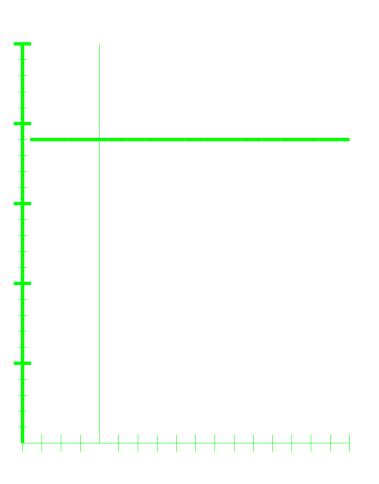
Monthly Costs - System 5 - Improved Community Room

Woltany System Cost									
	Coolin	g	Heatir	ng	Appliances		Hot Water		Total
Month	Cost	%	Cost	%	Cost	%	Cost	%	Cost
January	\$0.00	0.0%	\$418.79	100.0%	\$0.00	0.0%	\$0.00	0.0%	\$418.79
February	\$0.00	0.0%	\$342.63	100.0%	\$0.00	0.0%	\$0.00	0.0%	\$342.63
March	\$0.00	0.0%	\$292.38	100.0%	\$0.00	0.0%	\$0.00	0.0%	\$292.38
April	\$1.69	1.3%	\$130.62	98.7%	\$0.00	0.0%	\$0.00	0.0%	\$132.32
May	\$17.96	22.2%	\$62.95	77.8%	\$0.00	0.0%	\$0.00	0.0%	\$80.91
June	\$43.54	61.7%	\$26.99	38.3%	\$0.00	0.0%	\$0.00	0.0%	\$70.53
July	\$63.45	83.5%	\$12.57	16.5%	\$0.00	0.0%	\$0.00	0.0%	\$76.02
August	\$48.32	66.4%	\$24.47	33.6%	\$0.00	0.0%	\$0.00	0.0%	\$72.79
September	\$15.80	23.1%	\$52.68	76.9%	\$0.00	0.0%	\$0.00	0.0%	\$68.48
October	\$2.77	2.4%	\$113.59	97.6%	\$0.00	0.0%	\$0.00	0.0%	\$116.36
November	\$0.00	0.0%	\$201.31	100.0%	\$0.00	0.0%	\$0.00	0.0%	\$201.31
December	\$0.00	0.0%	\$391.92	100.0%	\$0.00	0.0%	\$0.00	0.0%	\$391.92
Total	\$193.54	8.5%	\$2,070.90	91.5%	\$0.00	0.0%	\$0.00	0.0%	\$2,264.44


Monthly Fuel Usage and Cost								
	Elect	ricity	Natura	al Gas	Prop	ane	Fuel Oil	
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons
January	\$28.90	214.1	\$0.00	0.0	\$389.89	230.7	\$0.00	0.0
February	\$37.49	277.7	\$0.00	0.0	\$305.14	180.6	\$0.00	0.0
March	\$67.84	502.5	\$0.00	0.0	\$224.54	132.9	\$0.00	0.0
April	\$97.20	720.0	\$0.00	0.0	\$35.11	20.8	\$0.00	0.0
May	\$77.11	571.2	\$0.00	0.0	\$3.80	2.2	\$0.00	0.0
June	\$70.53	522.5	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
July	\$76.02	563.1	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
August	\$72.79	539.2	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0
September	\$62.31	461.5	\$0.00	0.0	\$6.18	3.7	\$0.00	0.0
October	\$82.61	611.9	\$0.00	0.0	\$33.75	20.0	\$0.00	0.0
November	\$90.62	671.2	\$0.00	0.0	\$110.69	65.5	\$0.00	0.0
December	\$36.83	272.8	\$0.00	0.0	\$355.09	210.1	\$0.00	0.0
Total	\$800.25	5,927.8	\$0.00	0.0	\$1,464.19	866.4	\$0.00	0.0

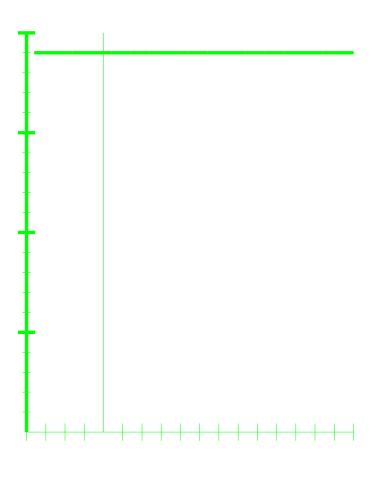
Average Electric Cost Per kWh:	\$0.135/kWh
Average Propane Cost Per Gallon:	\$1.690/Gallon
Total annual cooling load energy:	27,095,550 BTU
Total annual heating load energy:	148,620,304 BTU

Bin Analysis Report - System 1 - Existing BASEMENT


Bin Temp	Hours	Heating	Adjusted	Heat Pump	H. Pump	Backup	H.Pump	Backup	Total
Ranges	Per	Load	Load	Output	Run Time	Output	Heating	Heating	Heating
Degree F	Bin	Btuh	(x 0.85)	Btuh	Fraction	Btuh	Cost	Cost	Cost
-20 to -15	1	41,761	35,497	0	0.000	35,497	0.00	1.40	1.40
-15 to -10	18	39,389	33,480	0	0.000	33,480	0.00	23.84	23.84
-10 to -5	19	37,016	31,463	0	0.000	31,463	0.00	23.65	23.65
-5 to 0	52	34,643	29,447	0	0.000	29,447	0.00	60.57	60.57
0 to 5	136	32,270	27,430	0	0.000	27,430	0.00	147.56	147.56
5 to 10	154	29,897	25,413	0	0.000	25,413	0.00	154.80	154.80
10 to 15	209	27,525	23,396	0	0.000	23,396	0.00	193.41	193.41
15 to 20	312	25,152	21,379	0	0.000	21,379	0.00	263.84	263.84
20 to 25	385	22,779	19,362	0	0.000	19,362	0.00	294.86	294.86
25 to 30	666	20,406	17,345	17,345	0.456	0	193.04	0.00	193.04
30 to 35	878	18,033	15,328	15,328	0.403	0	204.59	0.00	204.59
35 to 40	650	15,661	13,311	13,311	0.350	0	120.64	0.00	120.64
40 to 45	658	13,288	11,295	11,295	0.297	0	95.69	0.00	95.69
45 to 50	679	10,915	9,278	9,278	0.244	0	75.35	0.00	75.35
50 to 55	619	8,542	7,261	7,261	0.191	0	50.19	0.00	50.19
55 to 60	717	6,169	5,244	5,244	0.138	0	39.38	0.00	39.38
60 to 65	685	3,796	3,227	3,227	0.085	0	21.79	0.00	21.79
Totals:	6,838						\$807.46	\$1,163.92	\$1,971.38

Bin Analysis Report - System 2 - Existing BASEMENT. ER OFF

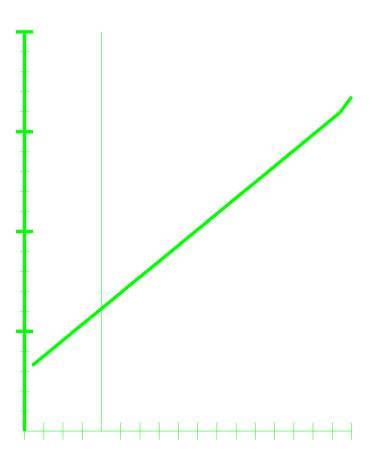
Bin Temp	Hours	Heating	Adjusted	Heat Pump	H. Pump	Backup	H.Pump	Backup	Total
Ranges	Per	Load	Load	Output	Run Time	Output	Heating	Heating	Heating
Degree F	Bin	Btuh	(x 0.85)	Btuh	Fraction	Btuh	Cost	Cost	Cost
-20 to -15	1	42,146	35,824	0	0.000	35,824	0.00	1.42	1.42
-15 to -10	18	39,751	33,789	33,789	0.534	33,789	10.56	9.62	20.18
-10 to -5	19	37,357	31,753	31,753	0.836	0	16.46	0.00	16.46
-5 to 0	52	34,962	29,718	29,718	0.782	0	39.86	0.00	39.86
0 to 5	136	32,567	27,682	27,682	0.728	0	92.11	0.00	92.11
5 to 10	154	30,173	25,647	25,647	0.675	0	91.90	0.00	91.90
10 to 15	209	27,778	23,611	23,611	0.621	0	109.45	0.00	109.45
15 to 20	312	25,383	21,576	21,576	0.568	0	142.64	0.00	142.64
20 to 25	385	22,989	19,540	19,540	0.514	0	150.15	0.00	150.15
25 to 30	666	20,594	17,505	17,505	0.461	0	194.82	0.00	194.82
30 to 35	878	18,199	15,469	15,469	0.407	0	206.47	0.00	206.47
35 to 40	650	15,805	13,434	13,434	0.354	0	121.75	0.00	121.75
40 to 45	658	13,410	11,399	11,399	0.300	0	96.57	0.00	96.57
45 to 50	679	11,015	9,363	9,363	0.246	0	76.04	0.00	76.04
50 to 55	619	8,621	7,328	7,328	0.193	0	50.65	0.00	50.65
55 to 60	717	6,226	5,292	5,292	0.139	0	39.74	0.00	39.74
60 to 65	685	3,831	3,257	3,257	0.086	0	21.99	0.00	21.99
Totals:	6,838						\$1,473.60	\$11.04	\$1,484.64



Jaffrey, NH 03452

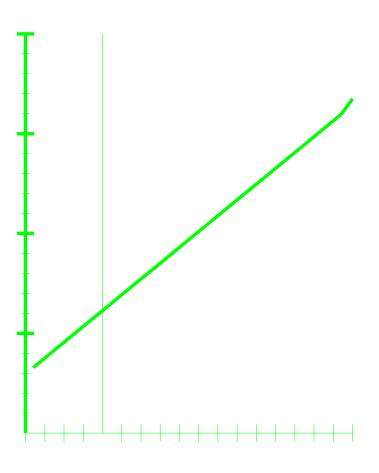
Bin Analysis Report - System 3 - Improved BASEMENT. ER OFF

Bin Temp	Hours	Heating	Adjusted	Heat Pump	H. Pump	Backup	H.Pump	Backup	Total
Ranges	Per	Load	Load	Output	Run Time	Output	Heating	Heating	Heating
Degree F	Bin	Btuh	(x 0.85)	Btuh	Fraction	Btuh	Cost	Cost	Cost
-20 to -15	1	39,287	33,394	0	0.000	33,394	0.00	1.32	1.32
-15 to -10	18	37,054	31,496	31,496	0.497	31,496	9.85	8.97	18.81
-10 to -5	19	34,822	29,599	29,599	0.779	0	15.34	0.00	15.34
-5 to 0	52	32,590	27,702	27,702	0.729	0	37.16	0.00	37.16
0 to 5	136	30,358	25,804	25,804	0.679	0	85.86	0.00	85.86
5 to 10	154	28,126	23,907	23,907	0.629	0	85.66	0.00	85.66
10 to 15	209	25,893	22,009	22,009	0.579	0	102.03	0.00	102.03
15 to 20	312	23,661	20,112	20,112	0.529	0	132.97	0.00	132.97
20 to 25	385	21,429	18,215	18,215	0.479	0	139.96	0.00	139.96
25 to 30	666	19,197	16,317	16,317	0.429	0	181.60	0.00	181.60
30 to 35	878	16,965	14,420	14,420	0.379	0	192.46	0.00	192.46
35 to 40	650	14,732	12,523	12,523	0.330	0	113.49	0.00	113.49
40 to 45	658	12,500	10,625	10,625	0.280	0	90.02	0.00	90.02
45 to 50	679	10,268	8,728	8,728	0.230	0	70.88	0.00	70.88
50 to 55	619	8,036	6,831	6,831	0.180	0	47.22	0.00	47.22
55 to 60	717	5,804	4,933	4,933	0.130	0	37.04	0.00	37.04
60 to 65	685	3,572	3,036	3,036	0.080	0	20.50	0.00	20.50
Totals:	6,838						\$1,373.63	\$10.29	\$1,383.92



\$1,383.92 \$1,373.63 \$10.Z9

Bin Analysis Report - System 4 - Existing Community Room


Dirivina									
Bin Temp	Hours	Heating	Adjusted	Heat Pump	H. Pump	Backup	H.Pump	Backup	Total
Ranges	Per	Load	Load	Output	Run Time	Output	Heating	Heating	Heating
Degree F	Bin	Btuh	(x 0.85)	Btuh	Fraction	Btuh	Cost	Cost	Cost
-20 to -15	1	73,619	62,576	0	0.000	62,576	0.00	1.29	1.29
-15 to -10	18	69,436	59,020	0	0.000	59,020	0.00	21.85	21.85
-10 to -5	19	65,253	55,465	0	0.000	55,465	0.00	21.67	21.67
-5 to 0	52	61,070	51,910	0	0.000	51,910	0.00	55.52	55.52
0 to 5	136	56,887	48,354	0	0.000	48,354	0.00	135.26	135.26
5 to 10	154	52,704	44,799	0	0.000	44,799	0.00	141.90	141.90
10 to 15	209	48,521	41,243	0	0.000	41,243	0.00	177.31	177.31
15 to 20	312	44,338	37,688	0	0.000	37,688	0.00	241.90	241.90
20 to 25	385	40,156	34,132	0	0.000	34,132	0.00	270.42	270.42
25 to 30	666	35,973	30,577	0	0.000	30,577	0.00	419.33	419.33
30 to 35	878	31,790	27,021	27,021	0.239	27,021	119.42	293.54	412.96
35 to 40	650	27,607	23,466	23,466	0.486	0	179.56	0.00	179.56
40 to 45	658	23,424	19,910	19,910	0.387	0	144.89	0.00	144.89
45 to 50	679	19,241	16,355	16,355	0.299	0	115.80	0.00	115.80
50 to 55	619	15,058	12,800	12,800	0.221	0	78.15	0.00	78.15
55 to 60	717	10,875	9,244	9,244	0.152	0	62.03	0.00	62.03
60 to 65	685	6,693	5,689	5,689	0.089	0	34.69	0.00	34.69
Totals:	6,838						\$738.99	\$1,779.98	\$2,518.97

Bin Analysis Report - System 5 - Improved Community Room

Bin Temp	Hours	Heating	Adjusted	Heat Pump	H. Pump	Backup	H.Pump	Backup	Total
Ranges	Per	Load	Load	Output	Run Time	Output	Heating	Heating	Heating
Degree F	Bin	Btuh	(x 0.85)	Btuh	Fraction	Btuh	Cost	Cost	Cost
-20 to -15	1	60,442	51,375	0	0.000	51,375	0.00	1.06	1.06
-15 to -10	18	57,007	48,456	0	0.000	48,456	0.00	17.94	17.94
-10 to -5	19	53,573	45,537	0	0.000	45,537	0.00	17.80	17.80
-5 to 0	52	50,139	42,618	0	0.000	42,618	0.00	45.58	45.58
0 to 5	136	46,705	39,699	0	0.000	39,699	0.00	111.06	111.06
5 to 10	154	43,271	36,780	0	0.000	36,780	0.00	116.53	116.53
10 to 15	209	39,836	33,861	0	0.000	33,861	0.00	145.64	145.64
15 to 20	312	36,402	30,942	0	0.000	30,942	0.00	198.77	198.77
20 to 25	385	32,968	28,023	0	0.000	28,023	0.00	222.36	222.36
25 to 30	666	29,534	25,104	0	0.000	25,104	0.00	345.24	345.24
30 to 35	878	26,100	22,185	22,185	0.197	22,185	98.04	242.21	340.25
35 to 40	650	22,666	19,266	19,266	0.399	0	147.42	0.00	147.42
40 to 45	658	19,231	16,347	16,347	0.318	0	118.95	0.00	118.95
45 to 50	679	15,797	13,428	13,428	0.246	0	95.07	0.00	95.07
50 to 55	619	12,363	10,509	10,509	0.182	0	64.16	0.00	64.16
55 to 60	717	8,929	7,590	7,590	0.124	0	50.93	0.00	50.93
60 to 65	685	5,495	4,670	4,670	0.073	0	28.48	0.00	28.48
Totals:	6,838						\$606.71	\$1,464.19	\$2,070.90

Appliance Report - System 1 - Existing BASEMENT

Appliance Set 1 - Teen Center

		Estimated Cost
Lighting		
Indoor:	2.5 Watts/Sq.ft.	
Indoor Annual Electrical Usage:	4,183.8 kWh	
Outdoor Lighting:	0.0 Watts	
Outdoor Lighting Use:	0 Hrs/Night	
Outdoor Lighting Annual Use:	0.0 kWh	
Annual Total Lighting Costs:		\$564.81
Cooking		
Range Type:	Electricity	
Range Efficiency:	0%	
Range Electricity Usage:	0.00 kWh	
Annual Cooking Costs:		\$0.00
Laundry		
Dryer Type:	Electricity	
Dryer Efficiency:	0%	
Dryer Electricity Usage:	0.00 kWh	•••••
Annual Laundry Costs:		\$0.00
Hot Water		
Water Heater Type:	Electricity	
Model Number:	Hotpoint Model HE40M1A	
Water Heater Efficiency:	70%	
Water Heater Usage Level:	Calculated	
Water Heater Daily Usage:	5 Gallons	
Water Heater Peak Usage:	0 Gallons	
Temperature Difference:	70°F 445.42 kWh	
Electricity Usage: Annual Hot Water Costs:	445.42 KVVII	\$60.13
Gas Appliances		\$00.15
Gas Appliances Annual Cost:		\$0.00
		\$0.00
Miscellaneous Appliances Refrigerator Usage, Cost:	875 kWh, \$118.13	
Stereo Usage, Cost:	75 kWh, \$110.13	
TV Usage, Cost:	200 kWh, \$27.00	
Dehumidifier Usage, Cost:	450 kWh, \$60.75	
Microwave Usage, Cost:	200 kWh, \$27.00	
Diswasher Usage, Cost:	150 kWh, \$20.25	
Hot Plate Usage, Cost:	164 kWh, \$22.14	
Coffee Maker Usage, Cost:	200 kWh, \$27.00	
Computer Usage, Cost:	185 kWh, \$24.98	
Miscellaneous Appliances Annual Cost:		\$337.37
Total		
Appliances Plus Hot Water Annual Cost:		\$962.31

Estimated Cost

Appliance Report - System 2 - Existing BASEMENT. ER OFF

Appliance Set 1 - Teen Center

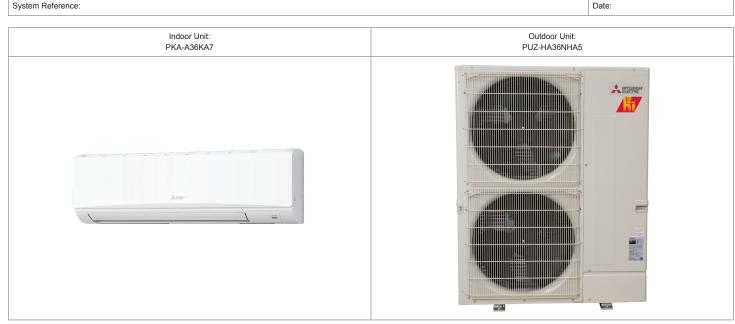
Lighting		
Indoor:	2.5 Watts/Sq.ft.	
Indoor Annual Electrical Usage:	4,183.8 kWh	
Outdoor Lighting:	0.0 Watts	
Outdoor Lighting Use:	0 Hrs/Night	
Outdoor Lighting Annual Use:	0.0 kWh	
Annual Total Lighting Costs:		\$564.81
Cooking		
Range Type:	Electricity	
Range Efficiency:	0%	
Range Electricity Usage:	0.00 kWh	• • • • •
Annual Cooking Costs:		\$0.00
Laundry		
Dryer Type:	Electricity	
Dryer Efficiency:	0%	
Dryer Electricity Usage:	0.00 kWh	• • • • •
Annual Laundry Costs:		\$0.00
Hot Water		
Water Heater Type:	Electricity	
Model Number:	Hotpoint Model HE40M1A	
Water Heater Efficiency:	70%	
Water Heater Usage Level:	Calculated	
Water Heater Daily Usage:	5 Gallons	
Water Heater Peak Usage:	0 Gallons	
Temperature Difference:	70°F	
Electricity Usage: Annual Hot Water Costs:	445.42 kWh	\$60.13
		\$60.13
Gas Appliances		\$ 0.00
Gas Appliances Annual Cost:		\$0.00
Miscellaneous Appliances		
Refrigerator Usage, Cost:	875 kWh, \$118.13	
Stereo Usage, Cost:	75 kWh, \$10.13	
TV Usage, Cost:	200 kWh, \$27.00	
Dehumidifier Usage, Cost:	450 kWh, \$60.75	
Microwave Usage, Cost:	200 kWh, \$27.00	
Diswasher Usage, Cost: Hot Plate Usage, Cost:	150 kWh, \$20.25 164 kWh, \$22.14	
Coffee Maker Usage, Cost:	200 kWh, \$27.00	
Computer Usage, Cost:	185 kWh, \$24.98	
Miscellaneous Appliances Annual Cost:	100 KWII, 424.00	\$337.37
Total		ψυυτ.υτ
Appliances Plus Hot Water Annual Cost:		\$962.31
Appliances Flus hot Water Annual Cost.		φ902.31

Estimated Cost

Appliance Report - System 3 - Improved BASEMENT. ER OFF

Appliance Set 2 - Teen Center

_ighting		
Indoor:	2.5 Watte/Sa ft	
Indoor Annual Electrical Usage:	2.5 Watts/Sq.ft. 4,183.8 kWh	
Outdoor Lighting:	0.0 Watts	
Outdoor Lighting Use:	0.0 Walls 0 Hrs/Night	
Outdoor Lighting Annual Use:	0.0 kWh	
Annual Total Lighting Costs:	0.0 KWII	\$564.81
Cooking		ψ504.01
	Electricity (
Range Type:	Electricity	
Range Efficiency:		
Range Electricity Usage:	0.00 kWh	00 O2
Annual Cooking Costs:		\$0.00
_aundry		
Dryer Type:	Electricity	
Dryer Efficiency:	0%	
Dryer Electricity Usage:	0.00 kWh	*
Annual Laundry Costs:		\$0.00
lot Water		
Water Heater Type:	Electricity	
Model Number:	Hotpoint Model HE40M1A	
Water Heater Efficiency:	3.20 COP	
Water Heater Usage Level:	Calculated	
Water Heater Daily Usage:	4 Gallons	
Water Heater Peak Usage:	0 Gallons	
Temperature Difference:	70°F	
Electricity Usage:	77.95 kWh	
Annual Hot Water Costs:		\$10.52
Gas Appliances		A a a a
Gas Appliances Annual Cost:		\$0.00
Aiscellaneous Appliances		
Refrigerator Usage, Cost:	550 kWh, \$74.25	
Stereo Usage, Cost:	75 kWh, \$10.13	
TV Usage, Cost:	200 kWh, \$27.00	
Dehumidifier Usage, Cost:	250 kWh, \$33.75	
Microwave Usage, Cost:	200 kWh, \$27.00	
Diswasher Usage, Cost:	150 kWh, \$20.25	
Hot Plate Usage, Cost:	164 kWh, \$22.14	
Coffee Maker Usage, Cost:	200 kWh, \$27.00	
Computer Usage, Cost:	185 kWh, \$24.98	• · · · · ·
Miscellaneous Appliances Annual Cost:		\$266.49
Fotal		
Appliances Plus Hot Water Annual Cost:		\$841.83
ices Plus Hot Water Annual Cost:		\$841.83


P-SERIES

SUBMITTAL DATA: PKA-A36KA7 & PUZ-HA36NHA5 36,000 BTU/H WALL-MOUNTED HEAT PUMP SYSTEM

Job Name:

System Reference:

INDOOR UNIT FEATURES

· Sleek, compact design

- Simple installation
- · Vane setting for air flow direction control
- · Auto fan speed mode
- · Ideal for spaces such as server rooms, daycare centers, classrooms, churches, small offices, and more

OUTDOOR UNIT FEATURES

- Variable speed INVERTER-driven compressor
- High heating capacity: flash injection circuit maintains 100% heating capacity at 5°F outdoor temperature
- Wide heating range: heating performance down to -13°F (average of 80% heating capacity)
- High speed heating at start up: Hyper-Heating INVERTER[®] reduces the time for heating at start up by about half compared to standard models
- Suction accumulator pre-charged with refrigerant volume for piping length up to 100 ft.
- Twinning of two indoor units possible with the 36 kBTU/H model
- · High pressure/temperature protection

SPECIFICATIONS: PKA-A36KA7 & PUZ-HA36NHA5

	Maximum Capacity	BTU/H	33,500
	Rated Capacity	BTU/H	33,500
	Minimum Capacity	BTU/H	18,000
Cooling ¹	Maximum Power Input	W	3,130
	Rated Power Input	W	2,790
	Moisture Removal	Pints/h	8.7
	Sensible Heat Factor		0.71
	Power Factor	%	96.3
	Maximum Capacity	BTU/H	40,000
	Rated Capacity	BTU/H	38,000
Heating at 47°F ²	Minimum Capacity	BTU/H	18,000
nealing at 47 F	Maximum Power Input	W	4,150
	Rated Power Input	W	3,410
	Power Factor	%	96.3
	Maximum Capacity	BTU/H	38,000
	Rated Capacity	BTU/H	25,000
Heating at 17°F ³	Maximum Power Input	W	6,010
	Rated Power Input	W	3,330
	Maximum Capacity	BTU/H	38,000
Heating at 5°F ⁴	Maximum Power Input	W	6,760
	SEER		16.2
	EER ¹		12.0
	HSPF (IV)		10.0
Efficiency	COP at 47°F ²		3.26
	COP at 17°F in Maximum Capacity		1.85
	COP at 5°F in Maximum Capacity		1.65
	Voltage, Phase, Frequency		208 / 230V, 1-phase, 60 Hz
	Guaranteed Voltage Range	VAC	198 – 253
	Voltage: Indoor - Outdoor, S1-S2	VAC	208V / 230
Flectrical			
Electrical	Voltage: Indoor - Outdoor, S2-S3		24
		V DC	24
	Voltage: Indoor - Remote controller	V DC	12
	Recommended Fuse/Breaker Size (Outdoor)	V DC A	12 30
	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor)	V DC A AWG	12 30 14
	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA	V DC A AWVG A	12 30 14 1.00
	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA Fan Motor Full Load Amperage	V DC A AWG AWG A	12 30 14 1.00 0.57
	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA Fan Motor Full Load Amperage Fan Motor Output	V DC A A AWG A A A A A A A A A A A A A A A A	12 30 14 1.00 0.57 56
	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA Fan Motor Full Load Amperage	V DC A AWG AWG A	12 30 14 1.00 0.57
	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA Fan Motor Full Load Amperage Fan Motor Output	V DC A A AWG A A A A A A A A A A A A A A A A	12 30 14 1.00 0.57 56
	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA Fan Motor Full Load Amperage Fan Motor Output Airflow Rate, Dry	V DC A A AWG A A A A A A CFM	12 30 14 1.00 0.57 56 705-810-920
	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA Fan Motor Full Load Amperage Fan Motor Output Airflow Rate, Dry Airflow Rate, Wet	V DC A A AWG A A AWG A A A A A A A A A A A A	12 30 14 1.00 0.57 56 705-810-920 635-730-830
	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA Fan Motor Full Load Amperage Fan Motor Output Airflow Rate, Dry Airflow Rate, Wet External Static Pressure	V DC A AWG AWG A A CFM CFM In.WG	12 30 14 1.00 0.57 56 705-810-920 635-730-830 n/a
Indoor Unit	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA Fan Motor Full Load Amperage Fan Motor Output Airflow Rate, Dry Airflow Rate, Wet External Static Pressure Sound Pressure Level	V DC A AWG AWG A A CFM CFM In.WG AB(A)	12 30 14 1.00 0.57 56 705-810-920 635-730-830 n/a 43-46-49
Indoor Unit	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA Fan Motor Full Load Amperage Fan Motor Output Airflow Rate, Dry Airflow Rate, Wet External Static Pressure Sound Pressure Level Drain Pipe Size	V DC A AWG AWG A A CFM CFM In. WG	12 30 14 1.00 0.57 56 705-810-920 635-730-830 n/a 43-46-49 5/8 (16)
Indoor Unit	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA Fan Motor Full Load Amperage Fan Motor Output Airflow Rate, Dry Airflow Rate, Wet External Static Pressure Sound Pressure Level Drain Pipe Size Condensate Lift Mechanism, Maximum Distance	V DC A AWG AWG A A CFM CFM In. WG	12 30 14 1.00 0.57 56 705-810-920 635-730-830 n/a 43-46-49 5/8 (16) n/a
Indoor Unit	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA Fan Motor Full Load Amperage Fan Motor Output Airflow Rate, Dry Airflow Rate, Wet External Static Pressure Sound Pressure Level Drain Pipe Size Condensate Lift Mechanism, Maximum Distance Heat Exchanger Type	V DC A AWG AWG A A CFM CFM In. WG	12 30 14 1.00 0.57 56 705-810-920 635-730-830 635-730-830 n/a 43-46-49 5/8 (16) n/a Plate fin coil
Indoor Unit	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA Fan Motor Full Load Amperage Fan Motor Output Airflow Rate, Dry Airflow Rate, Wet External Static Pressure Sound Pressure Level Drain Pipe Size Condensate Lift Mechanism, Maximum Distance Heat Exchanger Type	V DC A AWG AWG A A CFM CFM GHA DC CFM DC Ft. (m)	12 30 14 1.00 0.57 56 705-810-920 635-730-830 n/a 43-46-49 5/8 (16) 5/8 (16) n/a Plate fin coil White Munsell 1.0Y 9.2/0.2
Indoor Unit	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA Fan Motor Full Load Amperage Fan Motor Output Airflow Rate, Dry Airflow Rate, Wet External Static Pressure Sound Pressure Level Drain Pipe Size Condensate Lift Mechanism, Maximum Distance Heat Exchanger Type External Finish Color	V DC A AWG AWG A A CFM CFM CFM DC DC DC Ft. (m) W: In. (mm)	12 30 14 1.00 0.57 56 705-810-920 635-730-830 n/a 43-46-49 5/8 (16) 5/8 (16) n/a Plate fin coil White Munsell 1.0Y 9.2/0.2 46-1/16 (1170)
Indoor Unit	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA Fan Motor Full Load Amperage Fan Motor Output Airflow Rate, Dry Airflow Rate, Wet External Static Pressure Sound Pressure Level Drain Pipe Size Condensate Lift Mechanism, Maximum Distance Heat Exchanger Type External Finish Color	V DC A AWG AWG A A A CFM CFM CFM CFM In.WG In. (mm) Ft. (m) W: In. (mm) D: In. (mm)	12 30 14 1.00 0.57 56 705-810-920 635-730-830 635-730-830 635-730-830 635-730-830 635-730-830 705-810-920 635-730-830 705-810-920 635-730-830 705-810-920 635-730-830 705-810-920 635-730-830 705-810-920 635-730-830 705-810-920 635-730-830 705-810-920 635-730-830 705-810-920 635-730-830 705-810-920 635-730-830 705-810-920 635-730-830 705-810-920 635-730-830 705-810-920 635-730-830 705-810-920 635-730-830 705-810-920 635-730-830 705-810-920 635-730-830 705-810-920 705-920-920 705-920-920 705-920-920 705-920-920 705-920-920 705-920-920-920-920-920-920-920 705-920-920-920-920-920-920-920-920-
Indoor Unit	Recommended Fuse/Breaker Size (Outdoor) Recommended Wire Size (Indoor - Outdoor) MCA Fan Motor Full Load Amperage Fan Motor Output Airflow Rate, Dry Airflow Rate, Wet External Static Pressure Sound Pressure Level Drain Pipe Size Condensate Lift Mechanism, Maximum Distance Heat Exchanger Type External Finish Color	V DC A AWG AWG A A A CFM CFM In.WG In. (mm) Ft. (m) W: In. (mm) W: In. (mm) H: In. (mm)	12 30 14 1.00 0.57 56 705-810-920 635-730-830 n/a 43-46-49 5/8 (16) n/a Plate fin coil White Munsell 1.0Y 9.2/0.2 46-1/16 (1170) 11-5/8 (295) 14-3/8 (365)

SPECIFICATIONS: PKA-A36KA7 & PUZ-HA36NHA5

Unit Weight Lbs. (kg) Package Weight Lbs. (kg) Indoor Unit Operating Temperature Range Cooling Intake Air Temp (Maximum / Minimum) °F Heating Intake Air Temp (Maximum / Minimum) °F MCA A MOCP A Fan Motor Full Load Amperage A Fan Motor Output W Airflow Rate CFM Refrigerant Control CFM Heat Exchanger Type Heat Exchanger Type	46 (21) 53 90 DB, 73 WB / 66 DB, 59 WB 82 DB / 50 DB 28 40 0.4+0.4 86+86 3,530 Electronic Expansion Valve
Indoor Unit Operating Temperature Range Cooling Intake Air Temp (Maximum / Minimum) °F Heating Intake Air Temp (Maximum / Minimum) °F MCA A MOCP A Fan Motor Full Load Amperage A Fan Motor Output W Airflow Rate CFM Refrigerant Control Defrost Method	90 DB, 73 WB / 66 DB, 59 WB 82 DB / 50 DB 28 40 0.4+0.4 86+86 3,530
Indeoi Onli Operating Image of the term of the term of the term of the term of t	82 DB / 50 DB 28 40 0.4+0.4 86+86 3,530
MCA A MOCP A Fan Motor Full Load Amperage A Fan Motor Output W Airflow Rate CFM Refrigerant Control Defrost Method	28 40 0.4+0.4 86+86 3,530
MOCP A Fan Motor Full Load Amperage A Fan Motor Output W Airflow Rate CFM Refrigerant Control Defrost Method	40 0.4+0.4 86+86 3,530
Fan Motor Full Load Amperage A Fan Motor Output W Airflow Rate CFM Refrigerant Control Defrost Method	0.4+0.4 86+86 3,530
Fan Motor Output W Airflow Rate CFM Refrigerant Control Defrost Method	86+86 3,530
Airflow Rate CFM Refrigerant Control Defrost Method	3,530
Refrigerant Control Defrost Method	
Defrost Method	Electronic Expansion Valve
Heat Exchanger Type	Reverse Cycle
	Cross fin
Sound Pressure Level, Cooling ¹ dB(A)	52
Sound Pressure Level, Heating ² dB(A)	53
Compressor Type	INVERTER-Driven Twin Rotary
Compressor Model	ANB33FJEMT
Outdoor Unit Compressor Rated Load Amps A	18
Compressor Locked Rotor Amps A	27.5
Compressor Oil Type // Charge oz.	FV50S // 45
External Finish Color	Ivory Munsell 3Y 7.8/1.1
Base Pan Heater	n/a
W: In. (mm)	37-3/8 (950)
Unit Dimensions D: In. (mm)	13 + 1-3/16 (330 + 30)
H: In. (mm)	53-1/8 (1,350)
W: In. (mm)	40-15/16 (1,040)
Package Dimensions D: In. (mm)	17-11/16 (450)
H: In. (mm)	56-11/16 (1,440)
Unit Weight Lbs. (kg)	265 (120)
Package Weight Lbs. (kg)	289 (131)
Cooling Intake Air Temp (Maximum / Minimum) °F	115 DB / 0* DB
Outdoor Unit Operating Temperature Range	70 DB, 59 WB / -13 DB, -13 WB
Thermal Lock-out / Re-start Temperatures** °F	n/a
Туре	R410A
Refrigerant Lbs, oz	12
Gas Pipe Size O.D. (Flared) In.(mm)	5/8 (15.88)
Liquid Pipe Size O.D. (Flared) In.(mm)	3/8 (9.52)
Piping Maximum Piping Length Ft. (m)	245 (75)
Maximum Height Difference Ft. (m)	100 (30)
Maximum Number of Bends	15

Notes

AHRI Rated Conditions (Rated data is determined at a fixed compressor speed)	¹ Cooling (Indoor // Outdoor)	°F	80 DB, 67 WB // 95 DB, 75 WB
	² Heating at 47°F (Indoor // Outdoor)	°F	70 DB, 60 WB // 47 DB, 43 WB
	³ Heating at 17°F (Indoor // Outdoor)	°F	70 DB, 60 WB // 17 DB, 15 WB
Conditions	⁴ Heating at 5°F (Indoor // Outdoor)	°F	70 DB, 60 WB // -4 DB, -5 WB
	below 23°F DB in cooling mode. PUZ with wind baffle: 0°F - 115°F. e to avoid thermistor error and automatically restarts at these temperatures.		

SUBMITTAL DATA: MXZ-8C48NA **MULTI-INDOOR INVERTER HEAT-PUMP SYSTEM**

Job Name:

System Reference:

GENERAL FEATURES

Quiet Operation Optional base pan heater to prevent ice in drain pan Limited warranty: five years parts and seven years compressors

Date:

ACCESSORIES

- □ Three-port Branch Box (PAC-MKA30BC)
- □ Five-port Branch Box (PAC-MKA50BC)
- □ Distribution Pipe for Flare Connection
- (MSDD-50AR; necessary for installing two branch boxes) □ Distribution Pipe for Brazed Connection
 - (MSDD-50BR; necessary for installing two branch boxes)
- □ 3/8" x 1/2" Port Adapter (MAC-A454JP)
- □ 1/2" x 3/8" Port Adapter (MAC-A455JP)
- □ 1/2" x 5/8" Port Adapter (MAC-A456JP)
- □ 1/4" x 3/8" Port Adapter (PAC-493PI)
- □ 3/8" x 5/8" Port Adapter (PAC-SG76RJ)
- □ Base Heater (PAC-SJ20BH-E)

Outdoor Unit: MXZ-8C48NA

(For data on specific indoor units, see the MXZ-C Technical and Service Manual.)

Specifications		Model Name
Unit Type		MXZ-8C48NA
Rated Capacity	Btu/h	48,000 / 48,000
Capacity Range	Btu/h	15,500 - 48,000
Rated Total Input	W	4,000 / 5,050
Rated Capacity	Btu/h	54,000 / 54,000
Capacity Range	Btu/h	22,500 - 54,000
Rated Total Input	W	4,220 / 4,990
Rated Capacity	Btu/h	35,000 / 35,000
Maximum Capacity	Btu/h	36,600 / 36,600
Rated Total Input	W	3,720 / 4,420
	Btu/h	12,000 - 62,400
Power Supply	Voltage, Phase, Hertz	208 / 230V, 1-Phase, 60 Hz
Recommended Fuse/Breaker Size	A	40
MCA	A	37
Indoor - Outdoor S1-S2	V	AC 208 / 230
Indoor - Outdoor S2-S3	V	DC ±24
		Hermetic
	F.L.A.	0.4+0.4
Cooling	dB(A)	51
Heating	dB(A)	54
D)	In mm	52-11/16 x 41-11/32 x 13+1 (1338 x 1050 x 330+25)
	Lbs / kg	269 (122)
		Munsell No. 3Y 7.8/11
Liquid (High Pressure)	In / mm	3/8 (9.52)
Gas (Low Pressure)	In / mm	5/8 (15.88)
	Ft / m	492 (150)
utdoor unit and branch boxes	Ft / m	180 (55)
h box	Ft / m	82 (25)
een branch boxes and indoor units	Ft / m	311 (95)
If IDU is Above ODU	Ft / m	131 (40)
If IDU is Below ODU	Ft / m	164 (50)
· · · · · · · · · · · · · · · · · · ·		Flared/Flared
		R410A
	Unit Type Rated Capacity Capacity Range Rated Total Input Rated Capacity Capacity Range Rated Total Input Rated Total Input Rated Capacity Rated Total Input Rated Capacity Rated Total Input Rated Capacity Maximum Capacity Rated Total Input Rated Total Input Rated Total Input Power Supply Recommended Fuse/Breaker Size MCA Indoor - Outdoor S1-S2 Indoor - Outdoor S1-S2 Indoor Indoor - Outdoor S2-S3 Indoor Cooling Heating Liquid (High Pressure) Gas (Low Pressure) Gas (Low Pressure) Intdoor unit and branch boxes h box Indoor units If IDU is Above ODU If IDU is Above ODU	Unit TypeRated CapacityBtu/hCapacity RangeBtu/hRated Total InputWRated CapacityBtu/hCapacity RangeBtu/hRated Total InputWRated CapacityBtu/hRated Total InputWRated Total InputWRated Total InputWRated Total InputWReated Total InputWRecommended Fuse/Breaker SizeAMCAAIndoor - Outdoor S1-S2VIndoor - Outdoor S2-S3VFL.A.CoolingdB(A)Bta/hHeatingdB(A)Indoor - Outdoor S2-S3VUnit TypeLbs / kgIndoor - Unit on S2-S3FL.A.CoolingInHeatingGB(A)Inmmtub runnFL/MIn the tringInInmmIn

* Rating Conditions per AHRI Standard: Cooling | Indoor: 80° F (27° C) DB / 67° F (19° C) WB

Cooling | Outdoor: 95° F (35° C) DB / 23.9° C (75° F) WB

Heating at 47°F | Indoor: 70° F (21° C) DB / 60° F (16° C) WB Heating at 17° F | Indoor: 70° F (21° C) DB

Heating at 47°F | Outdoor: 47° F (8° C) DB / 43° F (6° C) WB Heating at 17° F | Outdoor: 17° F (-8° C) DB / 15° F (-9° C) WB

Specifications are subject to change without notice.

© 2019 Mitsubishi Electric Trane HVAC US, LLC

SPECIFICATIONS: MXZ-8C48NA

OPERATING RANGE:

Outdoor								
Cooling	23 to 115° F (−5 to 46° C) DB*1							
Heating	−4 to 59° F (−20 to 15° C) WB							
*1. D.B. 5 to 1	*1. D.B. 5 to 115° F [D.B15 to 46° C], when an optional Air Outlet							

ENERGY EFFICIENCIES:

Indoor Unit Type	SEER	EER	HSPF	COP @ 47°F	COP @ 17°F
Non-ducted	18.9	12.00	11.4	3.75	2.60
Ducted and Non-ducted	16.8	10.75	10.8	3.46	2.45
Ducted	14.7	9.50	10.1	3.17	2.30

NOTES:

Guide is installed.

- · Minimum of two Indoor Units must be connected to the MXZ-8C48NA.
- Minimum installed capacity cannot be less than 12,000 Btu/h.
- · Total connected capacity must not exceed 130% of outdoor unit capacity.
- System can operate with only one Indoor Unit turned on.
- Information provided at 208/230V.
- · For Reference:
 - MXZ-C Technical & Service Manual for detailed specifications and additional information per Indoor Unit Combination.
 - MXZ Series Multi-Zone Indoor/Outdoor Combination Table for allowed unit combinations.

MVZ CONNECTION RULES:

- Up to 2 MVZ's may be connected to this system*.
- When 2 MVZ's are connected, no additional indoor units can be used*.
- When 1 MVZ is connected, additional indoor units can be connected.
- When 1 MVZ is connected, total connected capacity must not exceed 130%.

*No limitation to the number of units connected when the SPTB1 accessory is used, total connected capacity must not exceed 130% (refer to SPTB1 documentation for more information).

NOTES:

PERFORMANCE CHART 8.

PKA	-A30I	KA6/	PUZ-	HA3	<u>0NH</u>	A5						C	APACI	TY (BT	U/H):	30,000) INPL	JT (kV	/): 2.50) SHF	: 0.70
Indoor	Indoor	Indoor	Indoor								Outdo	oor intake	e air °C/°F	= D.B.							
	intake air	intake air	intake air		20/68			25/77			30/86			35/95			40/104			45/115	
D.B.(°C)	D.B.(°F)	W.B.(°C)	W.B.(°F)	CA	SHC	P.C.	CA	SHC	P.C.	CA	SHC	P.C.	CA	SHC	P.C.	CA	SHC	P.C.	CA	SHC	P.C.
20	68	16	61	29,700	18,889	2.02	28,800	18,317	2.12	27,900	17,744	2.24	26,700	16,981	2.40	25,500	16,218	2.58	24,000	15,264	2.82
20	68	18	64	31,800	16,409	2.08	30,900	15,944	2.18	30,000	15,480	2.32	29,100	15,016	2.48	27,900	14,396	2.62	26,100	13,468	2.88
22	72	16	61	29,700	21,265	2.02	28,800	20,621	2.12	27,900	19,976	2.24	26,700	19,117	2.40	25,500	18,258	2.58	24,000	17,184	2.82
22	72	18	64	31,800	18,953	2.08	30,900	18,416	2.18	30,000	17,880	2.32	29,100	17,344	2.48	27,900	16,628	2.62	26,100	15,556	2.88
22	72	20	68	34,200	16,279	2.12	33,600	15,994	2.24	32,700	15,565	2.38	31,500	14,994	2.52	30,300	14,423	2.70	27,900	13,280	2.96
24	75	16	61	29,700	23,641	2.02	28,800	22,925	2.12	27,900	22,208	2.24	26,700	21,253	2.40	25,500	20,298	2.58	24,000	19,104	2.82
24	75	18	64	31,800	21,497	2.08	30,900	20,888	2.18	30,000	20,280	2.32	29,100	19,672	2.48	27,900	18,860	2.62	26,100	17,644	2.88
24	75	20	68	34,200	19,015	2.12	33,600	18,682	2.24	32,700	18,181	2.38	31,500	17,514	2.52	30,300	16,847	2.70	27,900	15,512	2.96
24	75	22	72	36,300	15,827	2.18	35,700	15,565	2.28	34,800	15,173	2.42	33,900	14,780	2.58	32,700	14,257	2.78	30,300	13,211	3.06
26	79	16	61	29,700	26,017	2.02	28,800	25,229	2.12	27,900	24,440	2.24	26,700	23,389	2.40	25,500	22,338	2.58	24,000	21,024	2.82
26	79	18	64	31,800	24,041	2.08	30,900	23,360	2.18	30,000	22,680	2.32	29,100	22,000	2.48	27,900	21,092	2.62	26,100	19,732	2.88
26	79	20	68	34,200	21,751	2.12	33,600	21,370	2.24	32,700	20,797	2.38	31,500	20,034	2.52	30,300	19,271	2.70	27,900	17,744	2.96
26	79	22	72	36,300	18,731	2.18	35,700	18,421	2.28	34,800	17,957	2.42	33,900	17,492	2.58	32,700	16,873	2.78	30,300	15,635	3.06
27	81	16	61	29,700	27,205	2.02	28,800	26,381	2.12	27,900	25,556	2.24	26,700	24,457	2.40	25,500	23,358	2.58	24,000	21,984	2.82
27	81	18	64	31,800	25,313	2.08	30,900	24,596	2.18	30,000	23,880	2.32	29,100	23,164	2.48	27,900	22,208	2.62	26,100	20,776	2.88
27	81	20	68	34,200	23,119	2.12	33,600	22,714	2.24	32,700	22,105	2.38	31,500	21,294	2.52	30,300	20,483	2.70	27,900	18,860	2.96
27	81	22	72	36,300	20,183	2.18	35,700	19,849	2.28	34,800	19,349	2.42	33,900	18,848	2.58	32,700	18,181	2.78	30,300	16,847	3.06
28	82	16	61	29,700	28,393	2.02	28,800	27,533	2.12	27,900	26,672	2.24	26,700	25,525	2.40	25,500	24,378	2.58	24,000	22,944	2.82
28	82	18	64	31,800	26,585	2.08	30,900	25,832	2.18	30,000	25,080	2.32	29,100	24,328	2.48	27,900	23,324	2.62	26,100	21,820	2.88
28	82	20	68	34,200	24,487	2.12	33,600	24,058	2.24	32,700	23,413	2.38	31,500	22,554	2.52	30,300	21,695	2.70	27,900	19,976	2.96
28	82	22	72	36,300	21,635	2.18	35,700	21,277	2.28	34,800	20,741	2.42	33,900	20,204	2.58	32,700	19,489	2.78	30,300	18,059	3.06
30	86	16	61	29,700	29,700	2.02	28,800	28,800	2.12	27,900	27,900	2.24	26,700	26,700	2.40	25,500	25,500	2.58	24,000	24,000	2.82
30	86	18	64	31,800	29,129	2.08	30,900	28,304	2.18	30,000	27,480	2.32	29,100	26,656	2.48	27,900	25,556	2.62	26,100	23,908	2.88
30	86	20	68	34,200	27,223	2.12	33,600	26,746	2.24	32,700	26,029	2.38	31,500	25,074	2.52	30,300	24,119	2.70	27,900	22,208	2.96
30	86	22	72	36,300	24,539	2.18	35,700	24,133	2.28	34,800	23,525	2.42	33,900	22,916	2.58	32,700	22,105	2.78	30,300	20,483	3.06
32	90	16	61	29,700	29,700	2.02	28,800	28,800	2.12	27,900	27,900	2.24	26,700	26,700	2.40	25,500	25,500	2.58	24,000	24,000	2.82
32	90	18	64	31,800	31,673	2.08	30,900	30,776	2.18	30,000	29,880	2.32	29,100	28,984	2.48	27,900	27,788	2.62	26,100	25,996	2.88
32	90	20	68	34,200	29,959	2.12	33,600	29,434	2.24	32,700	28,645	2.38	31,500	27,594	2.52	30,300	26,543	2.70	27,900	24,440	2.96
32	90	22	72	36,300	27,443	2.18	35,700	26,989	2.28	34,800	26,309	2.42	33,900	25,628	2.58	32,700	24,721	2.78	30,300	22,907	3.06
34	93	16	61	29,700	29,700	2.02	28,800	28,800	2.12	27,900	27,900	2.24	26,700	26,700	2.40	25,500	25,500	2.58	24,000	24,000	2.82
34	93	18	64	31,800	31,800	2.08	30,900	30,900	2.18	30,000	30,000	2.32	29,100	29,100	2.48	27,900	27,900	2.62	26,100	26,100	2.88
34	93	20	68	34,200	32,695	2.12	33,600	32,122	2.24	32,700	31,261	2.38	31,500	30,114	2.52	30,300	28,967	2.70	27,900	26,672	2.96
34	93	22	72	36,300	30,347	2.18	35,700	29,845	2.28	34,800	29,093	2.42	33,900	28,340	2.58		27,337	2.78	30,300	25,331	3.06

PKA-A36KA6/PUZ-HA36NHA5

CAPACITY (BTU/H): 33,500 INPUT (kW): 2.79 SHF: 0.71

Indoor	Indoor	Indoor	Indoor		Outdoor intake air °C/°F D.B.																
intake air	intake air	intake air	intake air		20/68			25/77			30/86			35/95			40/104		45/115		
D.B.(°C)	D.B.(°F)	W.B.(°C)	W.B.(°F)	CA	SHC	P.C.	CA	SHC	P.C.	CA	SHC	P.C.	CA	SHC	P.C.	CA	SHC	P.C.	CA	SHC	P.C.
20	68	16	61	33,165	21,425	2.26	32,160	20,775	2.37	31,155	20,126	2.50	29,815	19,260	2.68	28,475	18,395	2.88	26,800	17,313	3.14
20	68	18	64	35,510	18,678	2.33	34,505	18,150	2.44	33,500	17,621	2.59	32,495	17,092	2.77	31,155	16,388	2.92	29,145	15,330	3.21
22	72	16	61	33,165	24,078	2.26	32,160	23,348	2.37	31,155	22,619	2.50	29,815	21,646	2.68	28,475	20,673	2.88	26,800	19,457	3.14
22	72	18	64	35,510	21,519	2.33	34,505	20,910	2.44	33,500	20,301	2.59	32,495	19,692	2.77	31,155	18,880	2.92	29,145	17,662	3.21
22	72	20	68	38,190	18,560	2.37	37,520	18,235	2.50	36,515	17,746	2.66	35,175	17,095	2.81	33,835	16,444	3.01	31,155	15,141	3.30
24	75	16	61	33,165	26,731	2.26	32,160	25,921	2.37	31,155	25,111	2.50	29,815	24,031	2.68	28,475	22,951	2.88	26,800	21,601	3.14
24	75	18	64	35,510	24,360	2.33	34,505	23,670	2.44	33,500	22,981	2.59	32,495	22,292	2.77	31,155	21,372	2.92	29,145	19,993	3.21
24	75	20	68	38,190	21,616	2.37	37,520	21,236	2.50	36,515	20,667	2.66	35,175	19,909	2.81	33,835	19,151	3.01	31,155	17,634	3.30
24	75	22	72	40,535	18,079	2.44	39,865	17,780	2.55	38,860	17,332	2.70	37,855	16,883	2.88	36,515	16,286	3.10	33,835	15,090	3.41
26	79	16	61	33,165	29,384	2.26	32,160	28,494	2.37	31,155	27,603	2.50	29,815	26,416	2.68	28,475	25,229	2.88	26,800	23,745	3.14
26	79	18	64	35,510	27,201	2.33	34,505	26,431	2.44	33,500	25,661	2.59	32,495		2.77	31,155	23,865	2.92	29,145	22,325	3.21
26	79	20	68	38,190	24,671	2.37	37,520	24,238	2.50	36,515	23,589	2.66	35,175	22,723	2.81	33,835	21,857	3.01	31,155	20,126	3.30
26	79	22	72	40,535	21,321	2.44	39,865	20,969	2.55	38,860	20,440	2.70	37,855	19,912	2.88	36,515	19,207	3.10	33,835	17,797	3.41
27	81	16	61	33,165	30,711	2.26	32,160	29,780	2.37	31,155	28,850	2.50	29,815	27,609	2.68	28,475	26,368	2.88	26,800	24,817	3.14
27	81	18	64	35,510	28,621	2.33	34,505	27,811	2.44	33,500	27,001	2.59	32,495	26,191	2.77	31,155	25,111	2.92	29,145	23,491	3.21
27	81	20	68	38,190	26,198	2.37	37,520	25,739	2.50	36,515	25,049	2.66	35,175		2.81	33,835	23,211	3.01	31,155	21,372	3.30
27	81	22	72	40,535	22,943	2.44	39,865	22,564	2.55	38,860	21,995	2.70	37,855	21,426	2.88	36,515	20,667	3.10	33,835	19,151	3.41
28	82	16	61	33,165	32,037	2.26	32,160	31,067	2.37	31,155	30,096	2.50	29,815	28,801	2.68	28,475	27,507	2.88	26,800	25,889	3.14
28	82	18	64	35,510	30,041	2.33	34,505	29,191	2.44	33,500	28,341	2.59	32,495	27,491	2.77	31,155	26,357	2.92	29,145	24,657	3.21
28	82	20	68	38,190	27,726	2.37	37,520	27,240	2.50	36,515	26,510	2.66	35,175	25,537	2.81	33,835	24,564	3.01	31,155	22,619	3.30
28	82	22	72	40,535	24,564	2.44	39,865	24,158	2.55	38,860	23,549	2.70	37,855	22,940	2.88	36,515	22,128	3.10	33,835	20,504	3.41
30	86	16	61	33,165	33,165	2.26	32,160	32,160	2.37	31,155		2.50	29,815	-	2.68	28,475	28,475	2.88	26,800	26,800	3.14
30	86	18	64	35,510	32,882	2.33	34,505	31,952	2.44	33,500	31,021	2.59	32,495	30,090	2.77	31,155	28,850	2.92	29,145	26,988	3.21
30	86	20	68	38,190	30,781	2.37	37,520	30,241	2.50	36,515	29,431	2.66	35,175		2.81	33,835	27,271	3.01	31,155	25,111	3.30
30	86	22	72	40,535	27,807	2.44	39,865	27,347	2.55	38,860	26,658	2.70	37,855	<u> </u>	2.88	36,515	25,049	3.10	33,835	23,211	3.41
32	90	16	61	33,165	33,165	2.26	32,160	32,160	2.37	31,155	31,155	2.50	29,815		2.68	28,475	28,475	2.88	26,800	26,800	3.14
32	90	18	64	35,510	35,510	2.33	34,505	34,505	2.44	33,500	33,500	2.59	32,495		2.77	31,155	31,155	2.92	29,145	29,145	3.21
32	90	20	68	38,190	33,836	2.37	37,520	33,243	2.50	36,515	- /	2.66	35,175		2.81	33,835	29,978	3.01	31,155	27,603	3.30
32	90	22	72	40,535	31,050	2.44	39,865	30,537	2.55	38,860		2.70	37,855	<u> </u>	2.88	36,515	27,970	3.10	33,835	25,918	3.41
34	93	16	61	33,165	33,165	2.26	32,160	32,160	2.37	31,155		2.50	29,815	29,815	2.68	28,475	28,475	2.88	26,800	26,800	3.14
34	93	18	64	35,510	35,510	2.33	34,505	34,505	2.44	33,500	33,500	2.59	32,495	32,495	2.77	31,155	31,155	2.92	29,145	29,145	3.21
34	93	20	68	38,190	36,892	2.37	37,520	36,244	2.50	36,515	35,273	2.66	35,175	33,979	2.81	33,835	32,685	3.01	31,155	30,096	3.30
34	93	22	72	40,535	34,293	2.44	39,865	33,726	2.55	38,860	32,876	2.70	37,855	32,025	2.88	36,515	30,892	3.10	33,835	28,624	3.41

Note: CA : Capacity (Btu/h) D.B. : Dry-bulb temperature

Due to continuing improvement, above specification may be subject to change without notice.

Innerglass Window Systems LLC

15 Herman Drive Simsbury, Ct, 06070 800-743-6207 860-651-3951 Fax 860-651-4789

Price and Order Form

We price the Innerglass Window by the United Inch. The formula is Width + Height = U.I.

1. Please round to the nearest whole inch, then add the window width and height and write it on the sheet

2. Please write the color, window type code, and glazing code in the box on the measurement worksheet.

3. Square feet for glazing are Width x Height (in inches) divide by 144 to get Ft² and round up.

Storm

Window Type	Code	# Of Windows	United Inches	X Price Per U.I.	=	Price
Compression	(CP)			X \$3.25	=	\$
Double Hung	(DH)			X \$3.55	=	\$
Double Slider	(SL)			X \$3.55	=	\$
Triple Slider	(TL)			X \$4.15	=	\$
Surface Mount	(SM)			X \$3.25	=	\$
				X	=	\$
				X	=	\$
Glazing	Code		Square Feet	X Price Per Ft ²		Price
1/8 " Clear Glass	(DS)	Standard		X \$3.00	=	\$
1/8" Low E Glass	(LE)	High Performance		X \$6.00	=	\$
1/8' Acrylic	(AC)			X \$7.00	=	\$
Other				Х	=	\$
Call for price			Connecticut Reside	ents add 6.35% Tax	=	\$
Compression Wi Energy Star and		Low E glass is s for Tax Credits!				
Please call for	a truck	freight estimate.		I	\$	

Total Sale \$

You can pick up at the factory and avoid shipping charges.

Terms: 50% Deposit with your order. 50% paid when your windows are ready to ship. We must have full payment in order to ship your windows. We will send an order acknowledgment and the estimated ship date when we receive your order. We accept checks, money orders, VISA, MASTERCARD, AMERICAN EXPRESS and DISCOVER CARD.

ACCEPTANCE- The above prices, specifications and conditions are satisfactory, and are hereby accepted. I agree that I am responsible for correctly measuring my window openings, and that Innerglass Window Systems will not be responsible for any errors in the dimensions I have given them.

If Innerglass Window Systems measures we are responsible. Because these are custom sized, no refunds or returns are possible. Payment will be made as outlined above. When delivery or pickup of completed order is delayed by customer, balance is due. When delay is more than 30 days, storage charges may accrue.

Order Date	Signature	Name	
Address			StateZip
Home Phone		Work or Cell	
Email address_			
Credit Card # _		Expiration Date	Billing Zip
Devision 45 off C/	45/0000		

Revision 15 eff. 6/15/2023

Innerglass Window Systems Measuring Guidelines

Tools needed

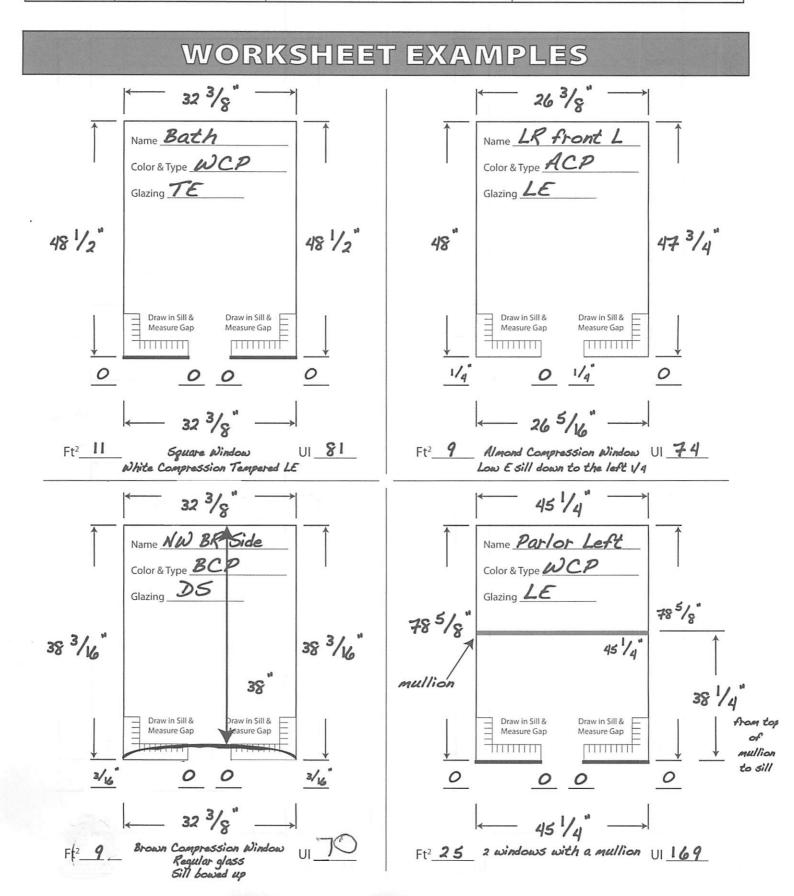
- 3" Case Dimension Locking tape measure
- 16"x 24" framing square (to check for out of square)
- 6" or 12" ruler
- Window Worksheet to record measurements

1. Measure all 4 sides to 1/16" and record the actual measurement. Do not average. Don't bend the tape into the corner. Instead add the tape case dimension to your measurement. Measure exactly where the window will be mounted.

2. The Innerglass Compression-Fit window needs 3/4 "depth in the window opening for mounting, 5/8" is possible but call us. The double hung and horizontal sliding interior storms need 1 1/8" depth in the window opening. Watch for obstructions such as window hardware. Screw heads and recessed pockets for the window stops are generally not a problem if they don't stick out more than 1/16".

3. To check for out of square, notice the framing squares at the left and right bottom corners and the 2 lines under each framing square where you record the gap on the worksheet. Start tight to the left side and slide the 24" side down until it touches the sill at either the corner or the end. The framing square is always held tight against the side so that any gap will show up at the bottom. If the window is square at the bottom you would record a "0" at each of the 4 lines under the framing squares. If the gap is 1/16 or less it is effectively square. For example: If a window sags down to the right the gap measurements could be 0 $\frac{1}{4}$, 0 $\frac{1}{4}$. Place the framing square against the right side of window and repeat the procedure. Think of this as a snapshot of each bottom corner. In reality they overlap but for clarity they are separated and are not to scale. Next lay the 24" side of the framing square on the sill to check if the sill is bowed up or down, if so give us a center vertical measurement and draw an arc showing the bow.

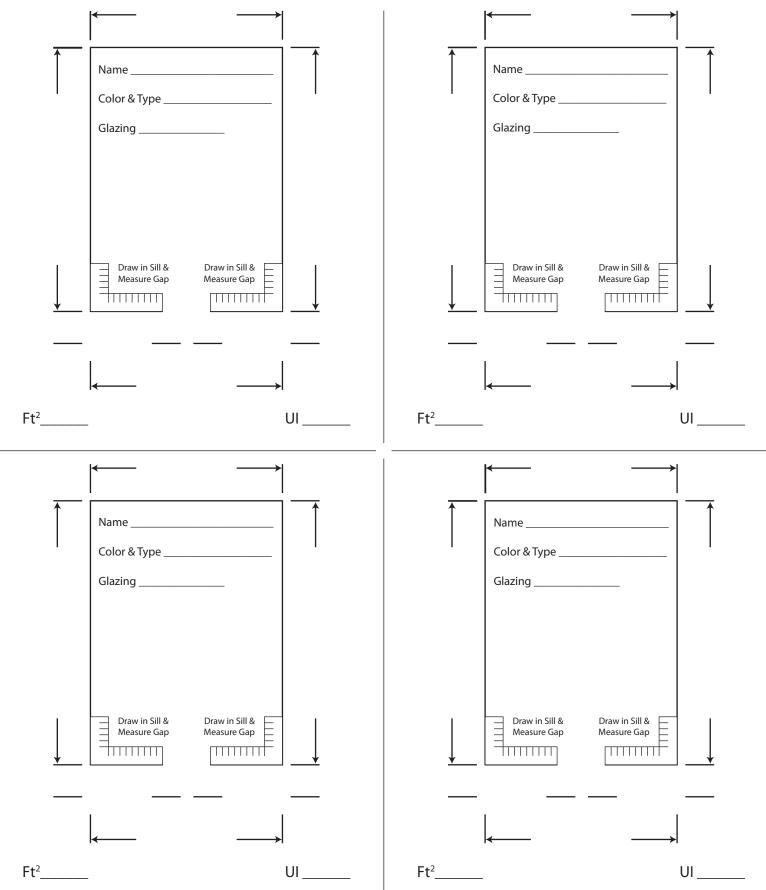
4. Innerglass Windows will accommodate 3/16" vertical and ½" horizontal play. On deep openings measure where you want the window to be and measure the opening at the wall to check that is does not get smaller than these tolerances. If the opening is smaller or the bottom of the opening is obstructed call us.


Mullions for dividing up large windows

5. If you are measuring for a double hung storm or are doing a large opening as separate upper & lower windows with a mullion, measure from the sill to the top of the meeting rail. (Where the dust collects.) This is where the top of the mullion will be. A window opening may be done as one window or two windows with a mullion. Generally double hung windows taller than 72" inches should be done as 2 windows with a horizontal mullion. Measure the length for the mullion where it is to be installed. The dimensions of the vinyl covered wood vertical mullions are 1 5/8" deep x 1 1/8" wide. The vinyl color will match the window. The horizontal mullion is $\frac{3}{4}$ " thick x 1" wide. Measure the width and height of the entire opening.

Do not make allowance for the mullion size. We will do that. For pricing purposes, remember that it is one opening but TWO windows, so the width & height of each needs to be added together to come up with the united inch measurement.

Maximum size for double strength glass is 25 sq ft or 125 united inches. Larger than that 3/16" or 1/4" laminated or tempered glass will be used at extra cost. Within 12" of a door or 18" of the floor, Acrylic or tempered glass must be used at extra cost. Please call us at 860-651-3951 or 800-743-6207 with any questions.


Code Ke	V		
Color	Window Type	Glazing	United Inches = Width + Height
A = Almond B = Brown W = White	CP = Compression DH = Double Hung SL = Sliding TL = Triple Slider SCR = Exterior Screen	DS = Regular LE = Low E LA = Laminated Glass AC = Acrylic TG = Tempered Glass TE = Tempered Low E	 Round to the nearest whole number before adding width and height 1/2" and over, round up Under 1/2", round down

Innerglass Window Systems

15 Herman Drive, Simsbury, CT 06070 Telephone 800-743-6207 • 860-651-3951 Fax 860-651-4789 www.stormwindows.com •

Customer Name Window Worksheet Totals This Page Page _____ of _____ (please make a copy for your use) Ft² _____ UI _____

Insight The Perfect Wall

An edited version of this Insight first appeared in the ASHRAE Journal.

By Joseph W. Lstiburek, Ph.D., P.Eng., Fellow ASHRAE

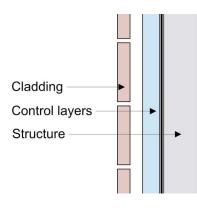
The perfect wall is an environmental separator – it has to keep the outside out and the inside in. In order to do this the wall assembly has to control rain, air, vapor and heat. In the old days we had one material to do this: rocks. We would pile a bunch or rocks up and have the rocks do it all. But over time rocks lost their appeal. They were heavy and fell down a lot. Heavy means expensive and falling down is annoying. So construction evolved. Today walls need four principal control layers – especially if we don't build out of rocks. They are presented in order of importance:

- a rain control layer
- an air control layer
- a vapor control layer
- a thermal control layer

A point to this importance thing here, if you can't keep the rain out don't waste your time on the air. If you can't keep the air out don't waste your time on the vapor.

The best place for the control layers is to locate them on the outside of the structure in order to protect the structure (**Figure 1**). When we built out of rocks the rocks didn't need much protection. When we build out of steel and wood we need to protect the steel and wood. And since most of the bad stuff comes from outside the best place to control the bad stuff is on the outside of the structure before it gets to the structure.

Also, after generations of building out of rocks folks somehow got the idea that they wanted to be comfortable – and they figured out that rocks were not the best insulation. I mean rocks are not that bad compared to windows – memo to architects: you


May 2008

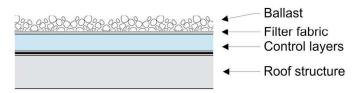
www.buildingscience.com

can't build an energy efficient green building out of glass, but you can get design awards and we all know which is more important. Back to rocks, they are heavy and you need a lot of them to make the wall have any decent thermal resistance so we invented thermal insulation.

But where to put the insulation? If we put the insulation on the inside of the structure the insulation does not protect the structure from heat and cold. Remember we really do want to protect that darn structure – especially for the sake of making the structural engineers life more happy. Expansion, contraction, corrosion, decay, ultra violet radiation, and almost all bad things all are functions of temperature. So all the control layers go on the outside. Keep the structure from going through temperature extremes and protect it from water in its various forms and ultra violet radiation and life is good.

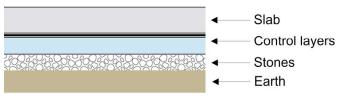
What about this air control thing? Well air can carry a lot of water and water is bad for the structure. So we have to keep air out of the structure as well because of the air-water thing – or if we let it get into the structure we have to make sure it does not get cold enough to drop its water. Now, just one other thing, tends to be important if you intend on living in the building or working in the building or keeping things safe in the building, we might want to control the interior environment. We especially ought to be concerned about what is in the interior air because when we are in the interior we tend to breathe it. Well, it turns out that we can't control air until we enclose air. So we need an honest to god airtight enclosure in order to provide conditioning such as filtration and air change and temperature and humidity

Figure 1: "The Perfect Wall"

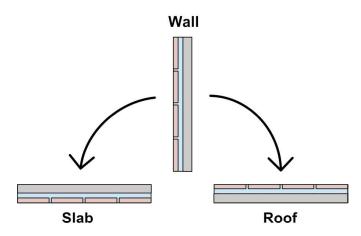

In concept the perfect wall has the rainwater control layer, the air control layer, the vapor control layer and the thermal control layer on the exterior of the structure. The claddings function is principally to act a an ultra-violet screen. Oh, and architects might consider the aesthetics of the cladding to be important. control. And once again the best place to control this air thing is on the outside of the structure – but under the insulation layer so the air does not change temperature. Presto: the perfect wall. A water control layer, air control layer and vapor control layer directly on the structure and a thermal control layer over the top of the other control layers (see **Figure 1** again).

This was figured out long before I was born – I think the Canadians figured it out first (1), but the Norwegians have some claims to this plus the Russians. I am going to go with the Canadians on this one because I am biased and proud of it. Also, I met Professor Hutcheon, and that is a story for the grandkids when I get some – memo to Christy and Andrew: so what's the delay here? For a more detailed discussion of the physics of all of this go to the old masters: Hutcheon and Handegord (2) and the new kids on the block Burnett and Straube (3).

In a beautiful bit of elegance and symmetry if you lie the perfect wall down you get the perfect roof (**Figure 2**) and then when you flip it the other way you get the perfect slab (**Figure 3**). The physics of walls, roofs and slabs are pretty much the same – no surprise (**Figure 4**). This insight was shone into a whole generation of practioners by Max Baker (4) when I was first getting started.


Notice in the perfect roof assembly the critical control layer or membrane for rainwater control and air control and vapor control is located under the thermal insulation layer and the stone ballast (i.e. "roof cladding") so that it is protected from the principle damage functions of water, heat and ultra violet radiation. Arrhanius* would be proud. Why we put the most critical control layers on roofs on the very, very top where they can be trashed by these damage functions never fails to amaze me. Yes, I know, they are easier to replace when they are located there. Standard answer for our disposable, unlimited resource available society.

Most problems in building enclosures occur where roofs meet walls. The classic roof-wall intersection is presented in **Figure 5** (will both credit and apologies to Max Baker). Notice that the control layer for rain on the roof is connected to the control layer for rain on the wall, the control layer for air on the roof is connected to the control layer for air on the wall....and so it goes. Beautiful. And when it is not so...ugly.


Figure 2: "The Perfect Roof"

The perfect roof is sometime referred to as an "inverted roof" since the rainwater control layer is under the insulation and ballast (i.e. roof cladding). Personally I don't view it as inverted. Those other folks got it wrong by locating the membrane exposed on the top of the insulation – it is they that are inverted.

Figure 3: "The Perfect Slab"

The perfect slab has a stone layer that separates it from the earth that acts as a capillary break and a ground water control layer. This stone layer should be drained and vented to the atmosphere – just as you would drain and vent a wall cladding.

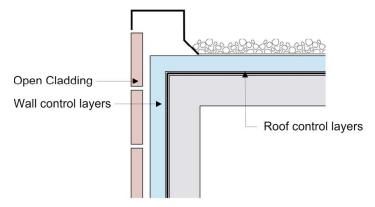
Figure 4: A Wall Is A Roof Is A Slab

The physics of walls, roofs and slabs are conceptually the same.

Time to put some meat on the bones of **Figure 1**. How should this perfect "conceptual" wall actually be built? Three ways. The best of the best of the best

^{*} Dead, Nobel Prize Winner, no longer fashionable to study.

can be found in **Figure 6**. This is a very special wall. I refer to it as the 500-year wall for three reasons:


- it represents 500 years of evolution
- it will last 500 years
- and it will take 500 years for you clients to pay for it

It is the type of wall that you save for special buildings. Buildings that are passed down from one generation to the next. Museums, art galleries, courthouses, libraries. Institutional buildings, because institutions are the only folks that can afford them. I call this wall the "institutional wall." Perhaps once or twice in an entire career you may be fortunate enough to employ it. It is sweet in that it can be constructed in any climate zone. The only thing that may be changed is the level of thermal insulation. My advice here is very simple: what ever you think the right amount of thermal insulation should be double it and shut up. If you love your kids don't argue with me.

The second wall should be the "meat and potatoes" wall for commercial buildings. The wall every commercial building should use. The base wall that our infrastructure should depend on. So, no surprise I call it, yes you guessed it: the "commercial wall." It has a conductive structure – metal studs. All of the insulation should – and must be located on the outside. It is a thermodynamic obscenity to insulate within a conductive structural frame. Again, you can build it anywhere in any climate location. Just consider the insulation levels (see above – particularly the part about loving your kids).

The third wall is the "residential wall." Notice the structural cavity is insulated. That is because we are using a relatively non-conductive structural frame – the structure is wood and wood material based. Wood is not particularly conductive – that is why we do not have wood frying pans.

For this third wall to work almost everywhere (except Alaska and north of Flyn Flon^{**} where we would not insulate even within a relatively non-conductive wood structural frame) we would split the thermal resistance of the insulation on the exterior of the structural frame with this insulation within the structural fame at least 50:50. So in an R-20 wall – at least R-10 or more on the outside of the non-conductive structural frame. And no vapor barrier on the inside of the assembly. Repeat after me, no vapor barrier on the inside of the assembly. We want the assembly to dry inwards from the control layers – and to dry outwards from the control layers. Always. Everywhere.

Figure 5: "The Roof-Wall Connection"

Notice that the control layer for rain on the roof is connected to the control layer for rain on the wall, the control layer for air on the roof is connected to the control layer for air on the wall.....and so it goes.

	Ma		Profile		
permeable textured wall fiinish	\square		1		
Latex paint or vapor semi-	4		1	-	
Gypsum board ————	\square		Ā	7	
Metal channel or wood furring ——	4		1		
Concrete block —					
	\square		П	7	
applied drainage plane, air barrier and vapor retarder			1		
Membrane or trowel-on or spray —					
polystyrene, expanded polystyrene, isocyanurate, rock wool, fiberglass			4		
Exterior rigid insulation — extruded -		-	1		
Drained cavity			1		
Brick veneer/stone veneer ———					

Figure 6: "The Institutional Wall"

The best wall that we know how to construct. Works everywhere in all climate zones.

^{**} Home of Bobby Clark, hockey legend, no teeth May 2008

Figure 7: "The Commercial Wall"	
Vapor Profile	Vapor Profile
	\rightarrow
permeable textured wall fiinish	Latex paint or vapor semi- permeable textured wall fiinish
Gypsum board	Gypsum board
Uninsulated steel stud cavity	
sheathing, plywood or oriented strand board (OSB)	board (OSB) Insulated wood stud cavity
And vapor retarder	Non paper-faced exterior gypsum
Membrane or trowel-on or spray	Membrane or trowel-on or spray applied drainage plane, air barrier and vapor retarder
Exterior rigid insulation — extruded	Exterior rigid insulation — extruded polystyrene, expanded polystyrene, isocyanurate, rock wool, fiberglass
Drained cavity	Drained cavity
Brick veneer/stone veneer	Brick veneer/stone veneer

The almost best wall we know how to construct. Affordable. Works everywhere in all climate zones.

Figure 8: "The Residential Wall"

The best residential wall we know how to construct. Not cheep. Works almost everywhere – except in extreme cold climates where we would not insulate within the wood structural fame.

References

- (1) Hutcheon, N. B., CBD-50 Principles Applied to an Masonry Wall, Canadian Building Digest, National Research Council Canada, Ottawa, Ontario, Canada, February 1964.
- (2) Hutcheon, N.B. and Handegord, G.O.; Building Science for a Cold Climate, National Research Council of Canada, 1983.
- (3) J.F. Straube and Burnett, E.F.P.; Building Science for Building Enclosures, Building Science Press, Westford, MA, 2005 (www.buildingsciencepress.com)
- (4) Baker, M.; Roofs, Multi-Science Publications, Ltd., Montreal, 1980.

Funded by

The Grange 21 Western Avenue

Henniker, NH

October 22, 2023

Table of Contents

Introduction	3
Executive Summary	3-5
Envelope Values & Units	6
Historic Energy Use & Analysis	7-8
Floorplan Graphics	9-10
Description of ESM with IR Images	11-18
Inventory of Equipment & Devices	19-20
Interior Photos	21
Exterior Photos	22
Appendix	

Heat Transfer Basics	23
Innerglass Ordering Worksheet	24-27
Elite RHVAC Load Calc Reports	
Existing Conditions	28-33
Retrofit	34-39
Lennox Furnace	40-42

Introduction

This Energy Audit has been funded by Eversource. Funds may, or may not, also be available to help reduce cost for eligible Energy Saving Measures (ESM) including weatherization efforts and equipment upgrades.

The purpose of an energy audit is to identify energy saving measures (ESM) in a building. Computer simulated energy models are developed to estimate energy consumption based on the local climate conditions, physical dimensions and characteristics of a building, mechanical systems, presumed lighting, equipment, and occupancy patterns, in addition to a number of other variables.

With the building modeled in existing conditions, energy savings can be estimated for improvements to the thermal envelope and/or more efficient mechanical systems. The cost of those measures can then be analyzed in terms of predicted energy saved and savings potential from converting to different sources of energy. The primary objective is to evaluate the level of investment warranted by energy and dollars saved from those specific measures.

This audit has been prepared with the best of intentions to assist the Town of Henniker make informed decisions regarding energy saving improvements in keeping with long term goals for the property. We do not make any warranty, expressed or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed.

Executive Summary

The Grange is an historic wood framed structure with a meeting room, office, and small restrooms on the first floor. The basement is unfinished, but fully used as a food pantry with refrigeration and dry goods storage.

As shown in the historic energy usage on page 7, the cost to heat the building in 2022 was \$1765 for propane and an estimated \$212 for electric resistance heating in the office. A portable air conditioner in the small office is the only cooling available at this time. While there are definitely opportunities to improve the thermal envelope to conserve heat, the costs for substantial improvements cannot be easily justified when the annual heating costs are relatively low, ie under \$2000 at current energy prices.

Therefore, recommended ESM have been organized into three tiers, representing different levels of investments and benefits. Tier one includes four ESM with an estimated total cost of \$1,820 and estimated annual savings of \$166 for a simple payback of 11 years. Tiers two and three reflect a more comprehensive upgrade to the thermal envelope, at an total estimated cost of \$22,232 (for all three tiers) and annual savings of \$1040 from existing equipment and current energy prices. A cost/savings analysis of all three is on the next page.

The predicted savings from this more comprehensive approach does not appear to be financially appealing at today's energy prices, but it reduces the heating loads enough to make converting to electric heat pumps more affordable with increased annual savings and offering summer cooling. It also has a more dramatic reduction of carbon emissions, improves comfort, and the ability for the building to 'coast' through power outages while conserving heat.

Other recommendations from this study include:

- Install new, Energy Star, bath fans on timers and vent to the outside to eliminate the risk of condensation in attic
- Convert all lighting (14 fixtures with 32 tubes) to LED,
- Replace a gasket on one of the freezers, defrost all of them, and plan on replacing oldest refrigeration units in the near term.

Summary of Energy Saving Envelope Measures

The recommended ESM are described in more detail later in this report.

The chart below summarizes the cost of each ESM in the fairly cost effective Tier One, estimated annual dollar savings, a simple payback in years, and return on investment (ROI) of each measure based on the service life of the improvement.

An investment of an estimated \$1,820 is predicted to save at least \$166 in energy costs at the three year average propane cost per gallon, and \$0.16 per kWh. This would result in a simple payback within 11 years. Since ESM continue to save energy for the life of each measure, this also results in a minimum annual return on investment (ROI) of 2.8% over each of the next 25 years. Again, the savings are based on recent average energy prices. If (when) prices increase, so too will the ROI.

Tier One	Cost of Measure	Annual Savings	Simple Payback Years	Life of Measure	Invest- ment Gain	ROI	Annual ROI
Replace Thermostat	\$ 70	n/a					
Weatherstrip Doors	\$165	\$28	5.9	10	\$115	69.7%	5.4%
Air Seal Ceiling	\$650	\$63	10.3	25	\$925	142.3%	3.6%
Rim Joists	\$1,005	\$75	13.4	25	\$870	86.6%	2.5%
-	\$1,820	\$166	11.0	22	\$1,795	100.7%	2.8%

This next chart presents the same Tier One ESM with resulting annual energy savings from each implemented measure and the annual reduction of CO2 emissions. Potential Eversource incentives are based on energy saved for the cost of the measures. Contact your Eversource representative, Jack Paloulek, to determine if the project is eligible for incentives.

Tier One	Cost of Measure		kWh Saved	Site Energy Reduction MMBTU	Source Energy Reduction	Tons CO2 Reductions Annually
Replace Thermostat	\$ 70					
Weatherstrip Doors	\$165	16		1.5	1.7	0.1
Air Seal Ceiling	\$650	37	162	3.9	5.7	0.3
Rim Joists	\$1,005	44	45	4.2	5.1	0.3
	\$1,820	98	207	9.6	12.6	0.7

Note: Replacing the main room thermostat with a programmable unit, with auto set back, will likely save measurable heating energy. But saving estimates are not included because they would depend on how the dial thermostats are operated now—which is not available. Programming for nighttime set back with an auto set back feature would allow people to turn the thermostats up as needed, but then automatically return to nighttime setbacks, without having to remember to do so.

"Going Deeper"

The chart below summarizes the cost of each ESM in a Tier Two and Tier Three which includes insulating the above grade walls, estimated annual dollar savings, a simple payback in years, and return on investment (ROI) of each measure based on the service life of the improvement.

In this case, pursuing a "deeper" energy retrofit by investing a total of \$22,232 (incudes Tier One costs) is predicted to save \$1,040 in annual energy costs. This would result in a simple payback of over 20 years, but a positive annual ROI each of those years of just under 1%. Again, this is based on stagnant energy prices. While price increases are likely, no one has a crystal ball on future energy prices, so the financial analysis is likely conservative. Costs are estimated and would need a contractor proposal for actual costs.

Tier Two	Cost of Measure	Annual Savings	Simple Payback Years	Life of Measure	Invest- ment Gain	ROI	Annual ROI
Insulate							
Foundation Walls	\$2,970						
Innerglass on Windows	\$3,960						
Ceiling Insulation	\$2 740						
Upgrade to R50	\$3,749				1		
Total Tier 2	\$10,679	\$525	20.3	25	\$2,447	22.9%	0.8%
DP AG Walls	\$9,734	\$349	27.9	25	-\$1,009	-10.4%	-0.4%
Totals For All Three Tiers	\$22,232	\$1,040	21.4	25	\$3,768	17.0%	0.6%

This next chart presents the same ESM with resulting annual energy savings from each implemented measure and the annual reduction of CO2 emissions. Potential Eversource incentives are based on energy saved for the cost of the measures.

Tier Two	Cost of Measure	LP Gallons Saved	kWh Saved	Site Energy Reduction MMBTU	Source Energy Reduction MMBTU	Tons CO2 Reductions Annually
Total Tier One	\$1820	98	207	9.6	12.6	.7
Total Tier Two	\$10,679	309		28.2	32.4	1.9
Insulate AG Walls	\$9,734	205	312	19.8	25.1	1.4
Total All ESM	\$22,232	612	519	57.6	70.1	4.0

Based on the articulated interest in converting to air source heat pumps for more efficient heating and adding summer cooling, the chart to the right shows the reductions in heating loads for each ESM group. Numbers indicate the heat pump capacity in tons for each condition, also indicating potential first cost reductions.

Assessed Values for The Grange and Other Model Inputs

The thermal envelope is the assembly of materials which form the barrier between inside conditioned space and outdoor weather and climate. Its ability to conserve heat and manage moisture determines, primarily, the heating load or demand of a building. Continuity and thickness of insulation, in direct contact with air barrier, is key to an effective thermal barrier.

Square Feet Area (whole)	3090	
Volume (ft3) (whole)	23,636	
Design Temps	Outdoor Dry	Indoor Dry
Winter	2	70
Summer	87	75
Reference City	Concord NH	

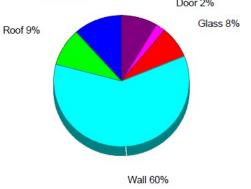
Summary reports for load calculations of the existing and retrofitted condition has been included at the end of this study. Below is a summary of values for existing and improved envelope components.

Envelope Component	Surface Area FT2	Assessed Effective R-Value	U- Factor	Improved U-factor	Improvement
DH Stained Glass Windows	192	1.75 1.78	0.57 0.56	0.37	Weather-Strip and Interior glaz-
Exterior Entry Doors Wood Framed Walls	59 1952	6	0.167	n/a 0.083	Weather-Strip Exterior Insulation
Rim Joists	165	2 2	0.5 0.5	0.056	Three inches SPF
Foundation Walls to 2' below grade Foundation Walls to Floor	620 160	8	0.13	0.083	2" FF Thermax OR
South Foundation Flat Ceiling	61 1470	1.7 16	0.61 0.063	.083 0.02	Air Seal and add 12" cellulose
Slopes and Flat above Storage	310	10	0.100	0.02	Dense Pack Slopes and Blow in
Floor Over basement	1350	2.7	0.37		Bring foundation walls into ther-
Volume: 12,000 ft3 Above Grade		Exist		Improved	
CFM Air Leakage Winter/Summer		110/59		75 Floor	12% Infiltration 9%

Floor 12%

Door 2%

Other formulas used in this analysis:


Propane: 91,300 Btu per gallon for site energy Source energy: 104,995 Btu per gallon (1.15xSite)

Electric: 3412 Btu per kWh site energy. Source energy: 11,361 Btu per kWh

CO2 Emissions:

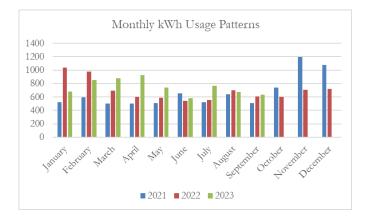
Propane: 12.35 lbs per gallon

Electric: CO2 lbs = kWh X .89

Heat loss by the thermal envelope component

Historic Energy Use Analysis

The energy analysis below is based on an average of the energy data provided for 2021 and 2022.


Energy	Units	Site Btus	Source Btus	\$Cost
Electric kWh	8324	28,401,488	94,568,964	\$1,253
Propane	1039	94,860,700	109,089,805	\$1,765
Totals		123,262,188	203,658,769	\$3,018
EUI KBtu/FT2	1323	93.2	153.9	\$2.28
EUI with basement	2646	46.6	77.0	\$1.14

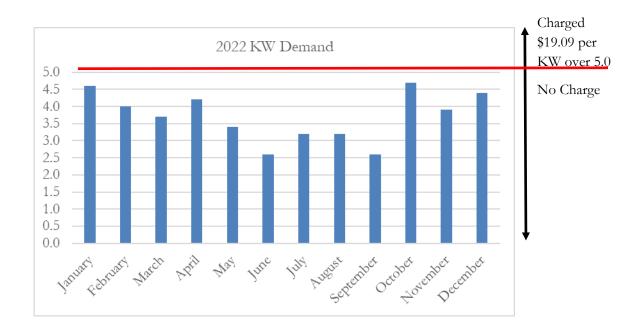
The Energy Utilization Index (EUI) offers a simple snapshot analysis of a building's energy use by looking at total amount of energy input (converted to Btu's) divided by the floor area of conditioned space. "Site Energy" refers to units of energy delivered to a site. Source energy includes transmission and some allowance for off site generation and other considerations.

Based on the information provided the Site EUI for 2021 and 2022 averaged 46.6 KBtu/ft2 for the whole building. Source EUI is 77.7 KBtu/ft2, with a cost per square foot of \$1.14 per ft2 based on current energy prices. Since the per unit cost for energy can vary greatly over time, converting all forms of energy to Btus is a more useful way of looking at a building's energy demands and potential reductions from energy saving measures.

An EUI of 46.6 is not considered very high, even for a building without central air conditioning, but it is notable that only the first floor is 'intentionally heated'. The basement is heated through the ceiling (conditioned floor above), from uninsulated ducts, and from heat generated from the refrigeration units.

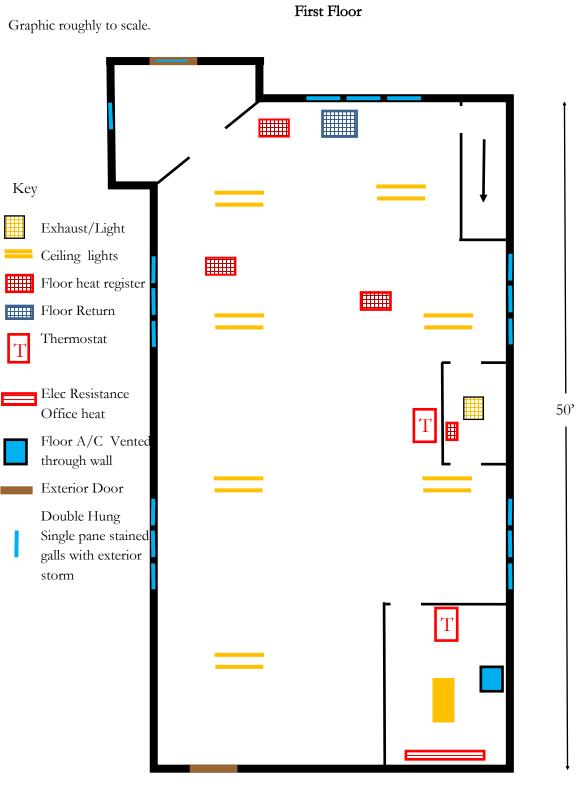
Monthly patterns of electric consumption can sometimes tell a useful story, though assumptions are never as useful as hard facts. Still, it is likely that the peak consumption pattern in the winter is due to heating the office with electric resistance (ER) baseboard. While ER is technically more efficient than even the condensing furnace, it is also by far the most expensive way to heat a space. Electric heat pumps are two to over four times more efficient than ER, (or any other existing technology), so can compete with fossil fuels on a cost per million Btu basis. However, at the 2023/2024 contracted price of \$1.439 per gallon of propane, the existing furnace is a more cost effective system. The financial advantage of converting to heat pumps is that it offers the option to offset with on-site generation of clean, renewable, and "free" solar energy.

KW Demand and the Cost of Supply


The KW Demand is determined each month by the peak call for power during any 30 minute window within a billing cycle. There were no Demand Charges in 2022 since the peak demand never exceeded 5.0 in any of the 12 months.

While its not a concern now, demand for power would increase when converting to electric heat pumps though could be mitigated by not using nighttime set backs. Heat pumps operate most efficiently when left at a stable thermostat setting.

Reducing electric usage saves energy and monthly costs in both the supply side (actual electricity used) and the delivery side (the very real transmission costs of delivering kWh to the meter, maintaining lines, etc).


Lowering peak demand on the regional grid plays a critical part in reducing the need to build more generation plants. It may be impacted by a reduction in kWh consumption, but is mostly determined by time and the appliance used. Customers are allowed a peak use of 5.0KW each month before incurring charges.

A good explanation about Demand Charges can be found at <u>Making Sense of Demand Charges</u>: <u>What Are They and How</u> <u>Do They Work? - Renewable Energy World</u>

Energy Audit

27'

9

Basement

Graphic only roughly to scale.

Energy Audit

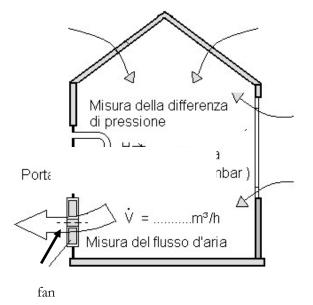
Description of Energy Saving Measures

Replacing the main room thermostat with a programmable unit, with auto set back, will likely save measurable heating energy. But saving estimates are not included because they would depend on how the dial thermostats are operated now—which is not available. Programming for nighttime set back with an auto set back feature would allow people to turn the thermostats up as needed, but then automatically return to nighttime setbacks, without having to remember to do so.

One good option: Honeywell Home RTH6580 W-Fi 7-Day Programmable Thermostat \$70

Air Sealing

The objective of this measure is to reduce uncontrolled air leakage. Weather-stripping exterior doors, windows, and the hatch to the attic, are all recommended steps.


But the recommendation is also to hire an insulation contractor who uses a blower door assembly to slightly depressurize the building in order to locate—and seal—air leakage sites.

NOTE: The building should not be put under pressure if the ceiling tiles are deemed to be asbestos!

A blower door consists of a large fan, capable of moving 6000 cubic feet of air per minute (CFM), an adjustable door frame, and a nylon skirt to seal off the exterior door, much like how a skirt on a kayak keeps a paddler dry below the waist.

BD's are often used to measure how much is pulled through cracks and gaps at a standardized pressure differential of 50pascals. Actual air leakage under natural conditions can be (sort of) guesstimated from that measurement, but many argue, including this consultant, that the best reason to put the building under pressure is to locate leakage sites.

Air Sealing: Weather-stripping Doors

Thermographic (aka Infra Red or IR) images depict differences in surface temperatures. Darker colors indicate cooler surfaces than brighter colors. Dark "blobs" or streaks can indicate cold air leaking into the building on a cold day, or washing through low density insulation such as fiberglass.

Air leakage around the three exterior doors offer a cost effective opportunity to reduce air filtration though installing professional quality weather stripping.

Interior Glazing Units

Exterior storm windows do reduce the amount of heat loss through windows to a certain extent, by adding an air space between the single pane of glass and storm. Importantly, they also serve to protect historic window frames and glass. But they do not stop air infiltration because they need 'weep holes' to allow drainage of condensation that forms.

As restoring historic wood windows becomes increasingly popular, many companies now offer a variety of interior options which are less expensive than full replacements and often as, or more, effective at reducing heat loss.

Interior glazing panels are a very effective option. They can be custom made with wood for \$800-\$1200, OR a non wood unit can be custom ordered on line and easily installed for less than \$300. In this case, a compression fitting unit is estimated to cost \$264 per window.

They can be single units and easily removed, or double hung, and left in place.

The statements below were copied in part from stormwindows.com and reference Innerglass Windows specifically, though many of the statements describe any quality interior glazing panel. Advantages include:

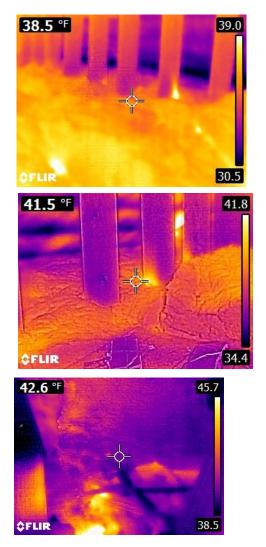
- Uses a concealed stainless steel springing system that requires no all-around track. It conforms to the window opening, automatically compensating for most out of square conditions.
- Custom made to your window dimensions, we can fit any window, no matter how crooked!
- Significantly more effective at insulating your home and lowering your heating and cooling bills than traditional exterior storm windows.
- Much tighter than exterior storms, because outside storm windows must be ventilated (you know, the weep holes) to get rid of the condensation that has already happened.
- So tight it provides a vapor barrier on the warm side that stops condensation in the first place.

Innerglass Window Systems pioneered the use of high performance Low-E glass in our interior storm windows. Low-E glass doubles the R value of regular glass making you warmer in the winter and cooler in the summer. It also cuts out 2/3 of the ultra-violet rays that damage your rugs and furniture.

https://stormwindows.com/index.php/storm-windows-how-to-order/

Innerglass	U.I / FT2	Per	Per Unit	# Units	Cost
Compression Unit	96	\$2.75	\$264.00	15	\$3,960

Ceiling Plane

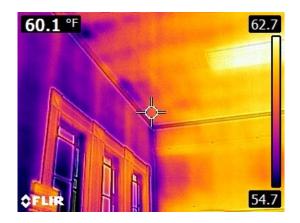

Stairs lead up to a finished storage area with an access hatch to above the ceiling in the wall. It is apparent that the room below was (presumably a Church) and open to a vaulted roof as remnants of plaster ceiling remain at the roof plane. The new ceiling structure has an old layer of fiberglass with facing disintegrated and a newer layer of 10" fiberglass batt laid on top. In all, there is a lot of insulation material, but much of it in poor condition and not in contact with an air barrier, thus diminishing its thermal performance.

ESM two calls for 'surgical air sealing' of gaps and penetrations as located from using a blower door. Ideally, ESM #7

would be approved at the same time so that during the air sealing, degraded insulation could be removed, good material positioned, and an additional 12" cellulose blown on top. Note: integrity of ceiling tiles should be assessed to carry the extra weight.



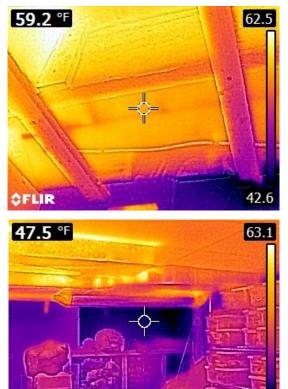
Ceiling Plane


Approximately 3' wall inside the storage attic. Note the appearance of insulation above the lower ceiling, that does not extend up the wall.

The middle image was taken from inside the storage attic, below the hatch, with the image on the right taken from inside the room below.

Basement and Foundation Walls

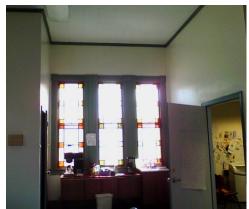
Though the basement doesn't (appear to) have a thermostat to be actively heated, it is heated by three sources:

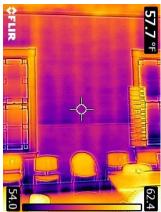

- 1. Heat conducting from the conditioned floor above
- 2. "Distribution losses" through the uninsulated metal ductwork
- 3. Heat expelled from the seven refrigeration units

To conserve that heat inside the building, ESM #4 focuses on insulating the rim and band joists and making a continuous air seal to the top of the foundation. ESM#II-5 suggests investing in insulating the block walls, at least the top 3-4', with either 2" foil faced foam board (Thermax has a 15 minute flame rating) or spraying closed cell foam followed by an intumescent paint to meet the fire code.

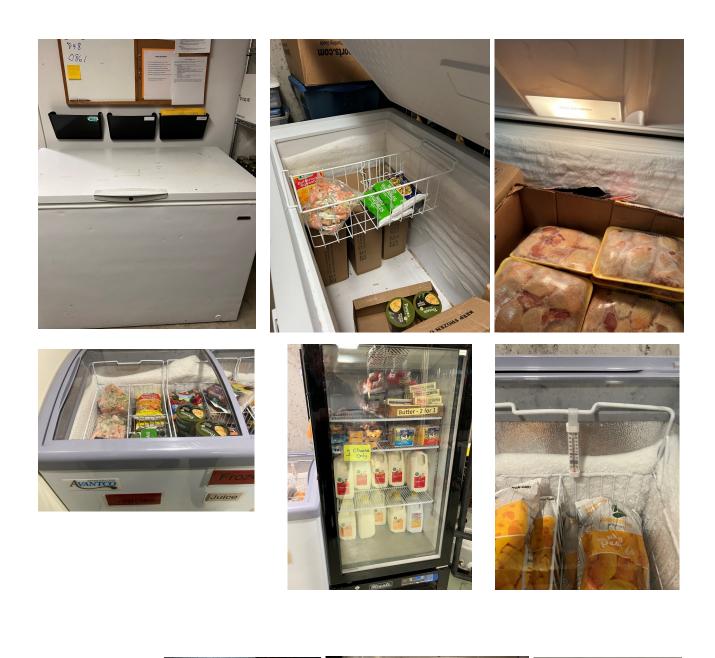
Insulating the whole foundation wall—from the rim joists down to the floor—is ideal, but in terms of "bang for the buck", the greatest heat loss occurs down to about two feet below grade, at which point the earth offers insulating value while also staying above ambient air temperatures during the coldest hours of winter.

But the other advantage to insulating the walls with a vapor impermeable material is to reduce moisture migration and therefore reduce hours needing dehumidification.


Above Grade Framed Walls


The brighter/lighter vertical lines shows that the surfaces to the inside of the wood stud framing is warmer than the cavity (stud bay) on either side, indicating that the wall cavities do not have insulation in them because the heat is moving to the outside more rapidly in between the studs. The Grange's walls account for an estimated 60% of all heat loss to the outside, mostly through the above grade framed walls, and the colder surfaces can be a source of discomfort as body heat radiates to both cold glass and walls.

The recommendation is to insulate the cavities by removing a clapboard on the outside, drilling a 2" hole in the wood sheathing, and blowing cellulose into each four inch cavity bay before sealing the hole and re-installing the clapboard.



Equipment Inventory

Appliance	Brand	Model	Serial	Manufact. Date		Efficiency	Refrigerant
First Floor Portable Air Conditioner	Maytag	M6P09S2A*B	MR 773013 357W	Ũ	9000 Btu	9.5 EER	R-22
Paper Shredder	Staples						
Copier	HP						
Small Fridge							
Coffee Makers (2)	Bunn						
Restroom Exhaust Fans							
Basement							
SS Refrigerator	Intertek	R23-S	R23S 19060031		7.5 Amps		R-290
Refrigerator	Electrolux	FKCH17F7HWD	WB34280576	Oct 2013	5.0 Amps		134-A
	Sears	253.1654211	WB94237194	Oct 2009	5.0 Amps		134-A
GlassTop Freezer	Avantco						
B Series Glass Door Fridge Miagali Ind.	Miagali Ind.	C-10RM-HC	HC00318101600920004	Oct 2018 2	2.1 A 250W		R-290
Commerical Freezer	Sears	253.145921	WB53224952	Aug 2005	5.0 A		134-A
	Kelvinator	KCCf170WH	738231 0292	、、	1.9 A		R-290
							0110
Dehumiditier	Aire	PAD / 0) CIUZ (BIM	0.9 A /20 W	/Upints/day	K 410
Electric Water Heater	State Ind.	PV 20 10MSB KZ J95924589	J95924589		19.9 gallons 1650	0	
Copier							
Furnace- Single Stage	Lennox	G26Q3/4	5802L 45012	Nov 2002 (Output 125,000 91% AFUE	91% AFUE	

Interior Photos

To basement attic

Restroom

Office

Exterior Photos

Energy Audit

North facing

West facing

East facing

A shed roof south facing addition provides covered but unconditioned (exterior to the thermal envelope) stair access to the basement and main floor.

The Basics of Heat Transfer in a Building

Heat moves in three basic ways in a building: Conduction, convection, and radiation.

Heat **conducts** to coolth or cold in any direction and through physical contact of materials. Insulation can slow the rate of heat loss to the outside. The rate at which it moves is determined by the type and thickness of material and the temperature difference between inside and outside. Compare holding a ceramic mug of hot water vs a glass of hot water, vs a glass of cold water. The skin of your hand will be heated—or cooled—based on the conductivity of the mug, glass, and the temperature difference of the water and your hand.

In a building in our climate, heat moves, or 'is lost' to the outside as it moves from inside heated space to the colder outside through an assembly of materials. For the walls, the assembly may consist of plaster or sheet-rock, brick, or wood framing with insulation in cavities (or not), exterior board sheathing, wood clapboards, or perhaps a thin layer of insulation and vinyl siding. The rate of heat loss varies with the difference between the inside temperature and outside temperature. That is why setting the thermostat back to 55 degrees when the building is unoccupied saves energy; because the rate of heat loss is slowed.

Heat can also be transferred through air or water by **convection**. While heat moves to cold via conduction, warmer air rises because it is lighter, or less dense, than cooler air. This means that insulation can only work well if it doesn't allow air to pass through it. The other way to say it is: Insulation needs to be in contact with an air barrier on all sides to perform as expected. Weatherstripping around doors and windows, for example, can stop cold air infiltration which, when warmed, rises to the ceiling and exfiltrates through any cracks or gaps in the ceiling material.

Insulation is usually described by its R-value, or resistance to allow heat transfer. But R-value doesn't tell the whole story because it only refers to conductive heat loss and doesn't consider convection. Manufactures of insulation test their products in a laboratory by placing it, fully lofted, in a perfectly sealed box, and measure the rate that heat moves from one side to the other to determine what "R-Value" to stamp on the product to be sold. If its not installed in exactly the same way, that R-value has very little meaning.

The third way heat moves is by **radiation**. This happens through space and from a warmer source to cooler surface in visual contact. Think of feeling the warmth of the sun and the immediate difference when a cloud blocks it. The sun still warms the earth surfaces and surrounding air, but direct radiation can be blocked—or shaded. Same thing with a wood stove. A hot stove warms air, but its greatest impact is by radiation which is only felt when one is in visible contact. And the further away, the less heat is felt. Its often tempting to replace windows because we feel so cold when next to them! That's because our body heat radiates to the cold surface. Insulated shades or quilts stops that radiative loss (but also eliminates view and daylight). Interior glazing panels can make a big difference for single pane windows because the air space raises the surface temperature of the inside glass.

In reality, all three mechanisms happen at the same time, though one usually dominates the others in terms of how much heat is moved.

The role of heating equipment is to replace the heat that is lost through the envelope. This is described or measured as replacing BTU per hour (BTU/hr). If the heating system (electric baseboard, oil or propane furnace or boiler, etc...) creates or moves more heat (BTU) in an hour than in lost to the outside, the system is considered "over-sized" which can waste energy unnecessarily. On the other hand, if the system cannot generate or move enough heat to replace what is lost in any given hour, the system is "undersized" and will not be able to maintain warm enough inside temperatures for human comfort. So correct sizing is important!

Innerglass Window Systems LLC

15 Herman Drive Simsbury, Ct, 06070 800-743-6207 860-651-3951 Fax 860-651-4789

Price and Order Form

We price the Innerglass Window by the United Inch. The formula is Width + Height = U.I.

1. Please round to the nearest whole inch, then add the window width and height and write it on the sheet

2. Please write the color, window type code, and glazing code in the box on the measurement worksheet.

3. Square feet for glazing are Width x Height (in inches) divide by 144 to get Ft² and round up.

Storm

Window Type	Code	# Of Windows	United Inches	X Price Per U.I.	=	Price
Compression	(CP)			X \$3.25	=	\$
Double Hung	(DH)			X \$3.55	=	\$
Double Slider	(SL)			X \$3.55	=	\$
Triple Slider	(TL)			X \$4.15	=	\$
Surface Mount	(SM)			X \$3.25	=	\$
				X	=	\$
				X	=	\$
Glazing	Code		Square Feet	X Price Per Ft ²		Price
1/8 " Clear Glass	(DS)	Standard		X \$3.00	=	\$
1/8" Low E Glass	(LE)	High Performance		X \$6.00	=	\$
1/8' Acrylic	(AC)			X \$7.00	=	\$
Other				Х	=	\$
Call for price			Connecticut Reside	ents add 6.35% Tax	=	\$
Compression Wi Energy Star and		Low E glass is s for Tax Credits!				
Please call for	a truck	freight estimate.		Shipping Tota	I	\$

Total Sale \$

You can pick up at the factory and avoid shipping charges.

Terms: 50% Deposit with your order. 50% paid when your windows are ready to ship. We must have full payment in order to ship your windows. We will send an order acknowledgment and the estimated ship date when we receive your order. We accept checks, money orders, VISA, MASTERCARD, AMERICAN EXPRESS and DISCOVER CARD.

ACCEPTANCE- The above prices, specifications and conditions are satisfactory, and are hereby accepted. I agree that I am responsible for correctly measuring my window openings, and that Innerglass Window Systems will not be responsible for any errors in the dimensions I have given them.

If Innerglass Window Systems measures we are responsible. Because these are custom sized, no refunds or returns are possible. Payment will be made as outlined above. When delivery or pickup of completed order is delayed by customer, balance is due. When delay is more than 30 days, storage charges may accrue.

Order Date	Signature	Name	
Address			StateZip
Home Phone		Work or Cell	
Email address_			
Credit Card # _		Expiration Date	Billing Zip
Devision 45 off C/	45/0000		

Revision 15 eff. 6/15/2023

Innerglass Window Systems Measuring Guidelines

Tools needed

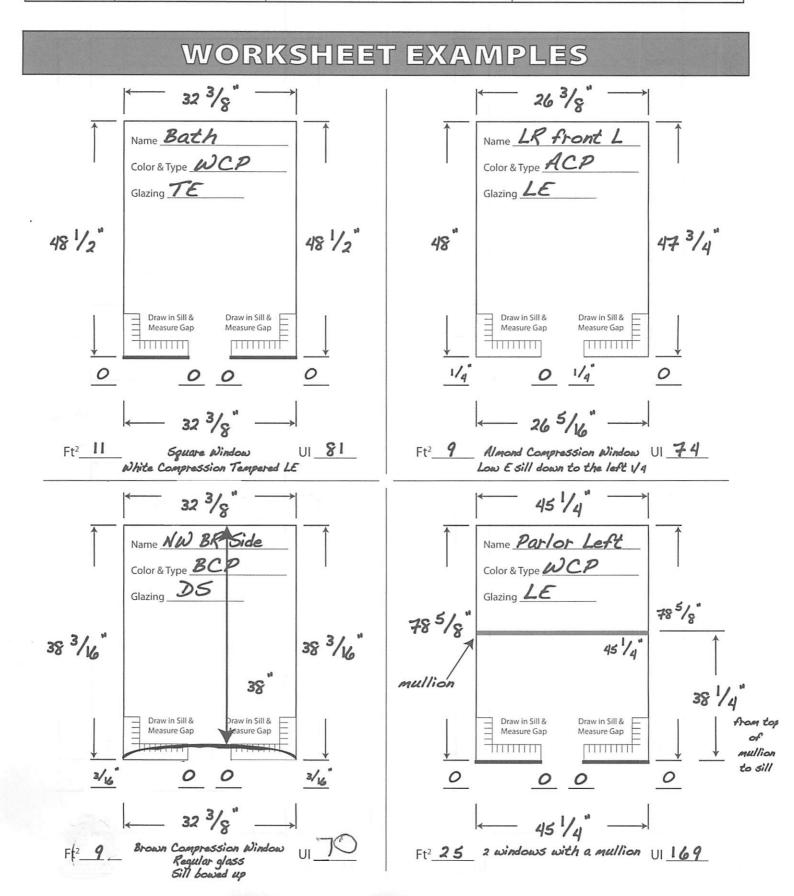
- 3" Case Dimension Locking tape measure
- 16"x 24" framing square (to check for out of square)
- 6" or 12" ruler
- Window Worksheet to record measurements

1. Measure all 4 sides to 1/16" and record the actual measurement. Do not average. Don't bend the tape into the corner. Instead add the tape case dimension to your measurement. Measure exactly where the window will be mounted.

2. The Innerglass Compression-Fit window needs 3/4 "depth in the window opening for mounting, 5/8" is possible but call us. The double hung and horizontal sliding interior storms need 1 1/8" depth in the window opening. Watch for obstructions such as window hardware. Screw heads and recessed pockets for the window stops are generally not a problem if they don't stick out more than 1/16".

3. To check for out of square, notice the framing squares at the left and right bottom corners and the 2 lines under each framing square where you record the gap on the worksheet. Start tight to the left side and slide the 24" side down until it touches the sill at either the corner or the end. The framing square is always held tight against the side so that any gap will show up at the bottom. If the window is square at the bottom you would record a "0" at each of the 4 lines under the framing squares. If the gap is 1/16 or less it is effectively square. For example: If a window sags down to the right the gap measurements could be 0 $\frac{1}{4}$, 0 $\frac{1}{4}$. Place the framing square against the right side of window and repeat the procedure. Think of this as a snapshot of each bottom corner. In reality they overlap but for clarity they are separated and are not to scale. Next lay the 24" side of the framing square on the sill to check if the sill is bowed up or down, if so give us a center vertical measurement and draw an arc showing the bow.

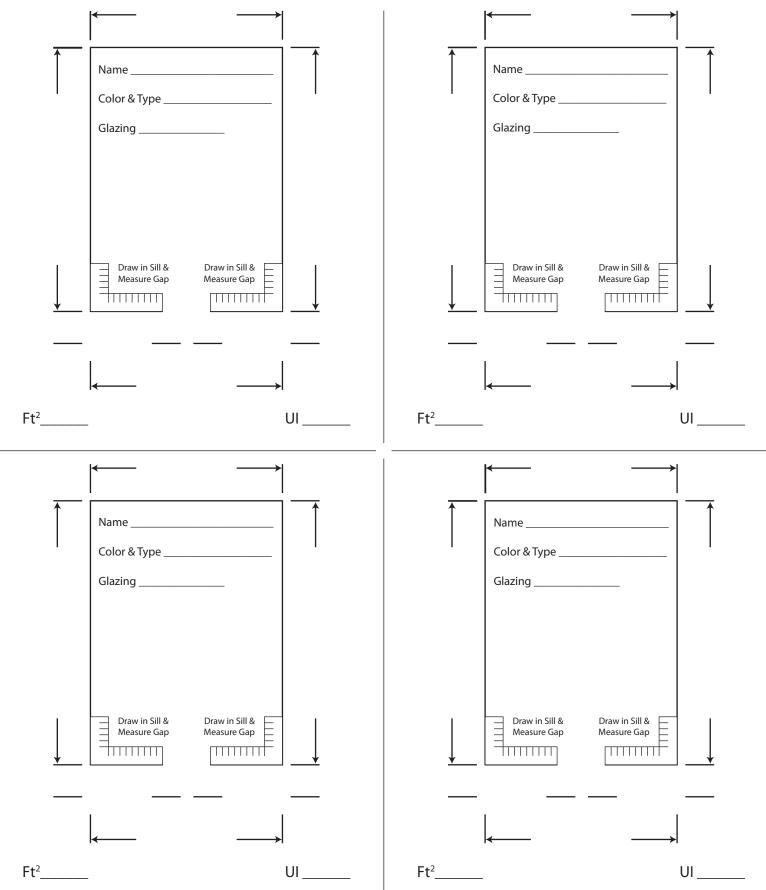
4. Innerglass Windows will accommodate 3/16" vertical and ½" horizontal play. On deep openings measure where you want the window to be and measure the opening at the wall to check that is does not get smaller than these tolerances. If the opening is smaller or the bottom of the opening is obstructed call us.


Mullions for dividing up large windows

5. If you are measuring for a double hung storm or are doing a large opening as separate upper & lower windows with a mullion, measure from the sill to the top of the meeting rail. (Where the dust collects.) This is where the top of the mullion will be. A window opening may be done as one window or two windows with a mullion. Generally double hung windows taller than 72" inches should be done as 2 windows with a horizontal mullion. Measure the length for the mullion where it is to be installed. The dimensions of the vinyl covered wood vertical mullions are 1 5/8" deep x 1 1/8" wide. The vinyl color will match the window. The horizontal mullion is $\frac{3}{4}$ " thick x 1" wide. Measure the width and height of the entire opening.

Do not make allowance for the mullion size. We will do that. For pricing purposes, remember that it is one opening but TWO windows, so the width & height of each needs to be added together to come up with the united inch measurement.

Maximum size for double strength glass is 25 sq ft or 125 united inches. Larger than that 3/16" or 1/4" laminated or tempered glass will be used at extra cost. Within 12" of a door or 18" of the floor, Acrylic or tempered glass must be used at extra cost. Please call us at 860-651-3951 or 800-743-6207 with any questions.


Code Ke	V		
Color	Window Type	Glazing	United Inches = Width + Height
A = Almond B = Brown W = White	CP = Compression DH = Double Hung SL = Sliding TL = Triple Slider SCR = Exterior Screen	DS = Regular LE = Low E LA = Laminated Glass AC = Acrylic TG = Tempered Glass TE = Tempered Low E	 Round to the nearest whole number before adding width and height 1/2" and over, round up Under 1/2", round down

Innerglass Window Systems

15 Herman Drive, Simsbury, CT 06070 Telephone 800-743-6207 • 860-651-3951 Fax 860-651-4789 www.stormwindows.com •

Customer Name Window Worksheet Totals This Page Page _____ of _____ (please make a copy for your use) Ft² _____ UI _____

Hopkinton Grange EXISTING With Floor HVAC Load Calculations

for

Town Of Henniker

Henniker NH 03242

Prepared By:

Margaret Dillon S.E.E.D.S.

603-532-8979 Saturday, October 21, 2023

Rhvac is an ACCA approved Manual J, D and S computer program. Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

Rhvac - Residential & Light Co S.E.E.D.S. Jaffrey, NH 03452	mmercial	HVAC Loads	1				ware Development, Ind nge EXISTING With Floc Page
Project Report							
General Project Information							
Project Title:	Hopkir	nton Grange	EXISTING	With Floor			
Project Date:		ay, October					
Client Name:	Town	Of Henniker					
Client City:	Hennil	ker NH 0324	2				
Company Name:	S.E.E.	D.S.					
Company Representative:	•	ret Dillon					
Company Phone:	603-53	32-8979					
Company E-Mail Address:							
Design Data							
Reference City:				I AP, New Ha			
Building Orientation:				or faces Nort	th		
Daily Temperature Range:			High				
Latitude:			3 Degrees	;			
Elevation:		-	2 ft.				
Altitude Factor:		0.98	8				
Out	door	Outdoor	Outdoor	Indoor	Indoor	Grains	
Drv	Bulb V	<u>Vet Bulb</u>	<u>Rel.Hum</u>	<u>Rel.Hum</u>	<u>Dry Bulb</u>	Difference	
Vinter:	-2	-2.6	n/a	n/a	70	n/a	
Summer:	87	70	43%	50%	75	19	
Check Figures							
Total Building Supply CFM:		2	,000	CFM P	er Square ft	:	0.647
Square ft. of Room Area:			,090	Square	eft. Per Ton:		694
Volume (ft ³):		12,00					
***Indicated volume is based	d on cust	om building	volume.				
Building Loads							
Total Heating Required Inclu	uding Ver	ntilation Air:		30 Btuh	100.130		
Total Sensible Gain:			,	148 Btuh		%	
Total Latent Gain:			,	977 Btuh	19		
Total Cooling Required Inclu	iding Ver	itilation Air:	53,4	125 Btuh	4.45	Tons (Based On	Sensible + Latent)
Notes							
Rhvac is an ACCA approved	d Manual	J. D and S d	computer pr	ogram.			
Calculations are performed					d ACCA Ma	nual D.	
All computed results are est							
Be sure to select a unit that						nufacturer's perfo	rmance data at
your design conditions.					-		

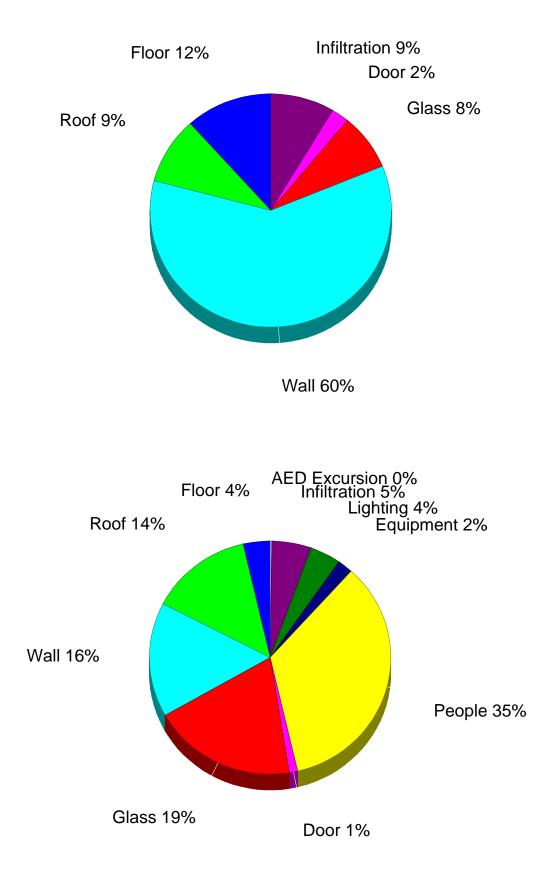
Miscellaneous Report

Wildoonanoodo M	spon								
System 1 Existing		Outdoor	Outdoor	Outo	door	Indo		Indoor	Grains
Input Data		Dry Bulb	Wet Bulb	Rel.	lum	Rel.Hu	<u>m [</u>	Dry Bulb	Difference
Winter:		-2	-2.6	8	80%	n	/a	70	n/a
Summer:		87	70	4	43%	50	%	75	18.65
Duct Sizing Inputs									
	<u>Main Trunk</u>			<u>Runouts</u>					
Calculate:	Yes			Yes					
Use Schedule:	Yes			Yes					
Roughness Factor:	0.00300			0.01000					
Pressure Drop:	0.1000	in.wg./10	00 ft.	0.1000	in.wg	j./100 ft.			
Minimum Velocity:	0	ft./min		0	ft./mi	n			
Maximum Velocity:	900	ft./min		750	ft./mi	n			
Minimum Height:	0	in.		0	in.				
Maximum Height:	0	in.		0	in.				
Outside Air Data									
		<u>Winter</u>		<u>Sun</u>	nmer				
Infiltration Specified:			AC/hr	0		AC/hr			
		110	CFM		110	CFM			
Infiltration Actual:		0.550	AC/hr	0	.550	AC/hr			
Building Volume:	<u>X_</u>	12,000*	Cu.ft.	X 12,	000*	Cu.ft.			
-		6,600	Cu.ft./hr	6	,600	Cu.ft./hr			
	2	(0.0167		<u>X 0.0</u>	0167				
Total Building Infiltration:		110	CFM		110	CFM			
Total Building Ventilation		0	CFM		0	CFM			
*Indicated volume is base		building	volume.						
		•							
System 1									
Infiltration & Ventilation S			: 13.04			3 X 12.00 Su			ence)
Infiltration & Ventilation L	atent Gain M	ultiplier:	12.52			3 X 18.65 Gr			
Infiltration & Ventilation S	ensible Loss	Multiplier	: 78.23	= (1.10 X	0.988	3 X 72.00 Wi	nter Temp	o. Differen	ce)
Winter Infiltration Specifie	ed: 0.55) AC/hr (1	10 CFM)						
Our set in the filter of the other set		$\Delta \Delta C / h = / 4$							

Summer Infiltration Specified: 0.550 AC/hr (110 CFM)

Load Preview Report

Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss	Sys Htg CFM	Sys Clg CFM	Sys Act CFM	Duct Size
Building	4.45	694	3,090	43,448	9,977	53,425	100,130	1,317	2,000	2,000	
System 1	4.45	694	3,090	43,448	9,977	53,425	100,130	1,317	2,000	2,000	18x18
Zone 1			3,090	43,448	9,977	53,425	100,130	1,317	2,000	2,000	18x18
1-First Floor			1,350	26,843	4,849	31,692	50,563	665	1,235	1,235	127
2-Office First Floor			120	1,951	307	2,258	3,859	51	90	90	16
3-Storage Room			270	7,347	4,108	11,455	6,054	80	338	338	46
4-Basement			1,350	7,308	713	8,021	39,654	521	336	336	46



Total Building Summary Loads

exterior storms, U-value 0.57, SHGČ 0.6 11L: Door-Metal - Paper Honeycomb Core, U-value 0.56 Jinsulated: Wall-Frame, Custom, Unisulated 2x4 historic, U-value 0.167 12A-Obw: Wall-Frame, no insulation in stud cavity, no board insulation, brick finish, wood studs, U-value 0.5 13AA-Occ: Wall-Block, no blanket or board insulation, open core, U-value 0.584 15A-2330c-4: Wall-Block, no blanket or board insulation, open core, U-value 0.584 15A-2530c-4: Wall-Block, no blanket or board insulation, open core, U-value 0.128 13AA-Occ: Wall-Block, no blanket or board insulation, open core, U-value 0.6 ayered FG Batts: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 slopes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 0.125 Flat Blown In.Poor: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 19A-0tp: Floor-Over enclosed crawl space, No insulation on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 Subtotals for structure: 9 People: 43 Equipment: Lighting: 650 Ductwork: Infiltration: Winter CFM: 110, Summer CFM: 110 Ventilation: Winter CFM: 110, Summer CFM: 110 Ventilation: Winter CFM: 110, Summer CFM: 110 Ventilation: Winter CFM: 110, Summer CFM: 0 AED Excursion: Total Building Load Totals: 10 Check Figures Total Building Supply CFM: 2,000 CFM Per So Square ft. of Room Area: 3,090 Square ft. P Volume (ft ³): ***: horicated volume is based on custom building volume. Building Loads	Lo 2 7,8 5 2,3 5 23,4 5 5,9 0 26,0 0 2,2 1 2,6 0 6,6 0 1,8 0 11,6 9 15 3 91,5 3 8,6 100,1 8,6 M Per Squa 100,1	940 070 287 633	Lat Gain 0 0 0 0 0 0	Sen Gain 10,318 590 3,748 775 3,404	To Ga 10,3 5 3,7 7
Stained Glass: Glazing-Historic stained glass with 192 exterior storms, U-value 0.57, SHGC 0.6 111: Door-Metal - Paper Honeycomb Core, U-value 0.56 58.5 Uninsulated: Wall-Frame, Custom, Unisulated 2x4 1951.6 2 historic, U-value 0.167 12A-Obu: Wall-Frame, no insulation in stud cavity, no 165 board insulation, brick finish, wood studs, U-value 0.5 13AA-Occ: Wall-Block, no blanket or board insulation, 620 2 open core, U-value 0.584 15A-2s3oc-4: Wall-Basement, concrete block wall, R-2 160 160 foram board to 3', no framing, no interior finish, open core, 4' floor depth, U-value 0.128 13AA-0cc: Wall-Block, no blanket or board insulation, open core, U-value 0.61 61 1470 Layreed FG Batts: Roof/Ceiling-Under Attic with 1470 1470 150 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Tiwo haphazzard layes of fg batts with voids, U-value 0.63 200 200 Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, fiberglass.Poor, U-value 0.125 110 110 Flat Blown In.Poor: Roof/Ceiling-Under Attic with 110 1350 1 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 134 1350 1	2 7,8 5 2,3 6 23,4 5 5,9 0 26,0 0 2,2 1 2,6 0 6,6 0 1,8 0 1,8 0 7 0 11,6 9 1,5 3 91,5 3 91,5 3 8,6 100,1 M Per Squa lare ft. Per	372 358 466 940 970 287 533	0 0 0 0	10,318 590 3,748 775	10,3 5 3,7 7
exterior storms, U-value 0.57, SHGČ 0.6 11: Door-Metal - Paper Honeycomb Core, U-value 0.56 15: Door-Metal - Paper Honeycomb Core, U-value 0.56 historic, U-value 0.167 2A-Obw: Wall-Frame, no insulation in stud cavity, no 53AA-0oc: Wall-Block, no blanket or board insulation, open core, U-value 0.584 5A-2s3oc-4: Wall-Basement, concrete block wall, R-2 foam board to 3, no framing, no interior finish, open core, 4' floor depth, U-value 0.128 3AA-0oc: Wall-Block, no blanket or board insulation, open core, U-value 0.6 ayered FG Batts: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 opes. Eaves-ad: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 opes. Eaves-ad: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.125 lat Blown In.Poor: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 9A-Otp: Floor-Over enclosed crawl space, No insulation on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 Subtotals for structure: People: aguipment: Jighting: Ductwork: filtration: Winter CFM: 110, Summer CFM: 110 Aentilation: Winter CFM: 110, Summer CFM: 0 AED Excursion: Total Building Load Totals: Total Building Load Totals: Didek Figures Total Building Supply CFM: 2,000 CFM Per Sc Square ft. of Room Area: 3,090 Square ft. P Aluding Loads Total Heating Required Including Ventilation Air: 43,448 Btuh 100 101 102 103 103 104 105 104 105 104 105 104 105 104 105 104 105 105 105 105 105 105 106 107 107 107 107 107 107 107 107	5 2,3 5 23,4 5 5,9 0 26,0 0 2,2 1 2,6 0 6,6 0 1,8 0 11,6 9 1,5 0 11,6 9 1,5 0 8,6 100,1 M Per Squa lare ft. Per	358 466 940 070 287 533	0 0 0 0	590 3,748 775	5 3,7 7
1L: Door-Metal - Paper Honeycomb Core, U-value 0.56 58.5 ninsulated: Wall-Frame, Custom, Unisulated 2x4 1951.6 2 historic, U-value 0.167 1951.6 2 2A-Obw: Wall-Frame, no insulation in stud cavity, no 165 5 board insulation, brick finish, wood studs, U-value 0.5 3 620 2 3AA-Ooc: Wall-Block, no blanket or board insulation, core, U-value 0.584 620 2 5A-230c-4: Wall-Basement, concrete block wall, R-2 160 60 6 foam board to 3, no framing, no interior finish, open core, U-value 0.6 8 8 8 SAA-Ooc: Wall-Block, no blanket or board insulation, open core, U-value 0.6 61 0 0 0 0 61 0 0 0 0 0 61 0	 23,4 5,9 26,0 26,0 2,2 2,6 2,6 2,6 2,6 6,6 1,8 1,8 1,8 1,8 1,8 1,8 1,8 8,6 100,1 	466 940 970 287 633	0 0 0	3,748 775	3,7 7
ninsulated: Wall-Frame, Custom, Unisulated 2x4 historic, U-value 0.167 2A-Obw: Wall-Frame, no insulation in stud cavity, no 5aA-Aoc: Wall-Block, no blanket or board insulation, open core, U-value 0.584 5A-2s3oc-4: Wall-Basement, concrete block wall, R-2 160 foam board to 3', no framing, no interior finish, open core, 4' floor depth, U-value 0.128 3AA-0oc: Wall-Block, no blanket or board insulation, open core, U-value 0.6 ayered FG Batts: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 opes. Eaves-ad: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 opes. Eaves-ad: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.125 at Blown In.Poor: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 0A-Otp: Floor-Over enclosed crawl space, No insulation on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 Subtotals for structure: 9 People: 43 cquipment: ighting: 04 Check Figures otal Building Load Totals: 10 Check Figures otal Building Supply CFM: **Indicated volume is based on custom building volume. 8 Building Loads otal Heating Required Including Ventilation Air: 100,130 Btuh 10 otal Sensible Gain: 102 103 104 105 105 105 106 106 105 106 106 106 106 106 106 107 100,130 107 100,130 107 100,130 107 100,130 107 107 100,130 107 107 107 107 107 107 107 10	 23,4 5,9 26,0 26,0 2,2 2,6 2,6 2,6 2,6 6,6 1,8 1,8 1,8 1,8 1,8 1,8 1,8 8,6 100,1 	466 940 970 287 633	0 0 0	3,748 775	3,7 7
historic, U-value 0.167 2A-Obx: Wall-Frame, no insulation in stud cavity, no 2A-Obx: Wall-Frame, no insulation in stud cavity, no board insulation, brick finish, wood studs, U-value 0.5 3AA-0oc: Wall-Block, no blanket or board insulation, core, U-value 0.584 5A-2s3oc-4: Wall-Basement, concrete block wall, R-2 foam board to 3', no framing, no interior finish, open core, 4' floor depth, U-value 0.128 3AA-0oc: Wall-Block, no blanket or board insulation, open core, U-value 0.6 ayered FG Batts: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 opes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof 200 Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 0.125 at Blown In.Poor: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 9A-Otp: Floor-Over enclosed crawl space, No insulation 1350 43 94 94 94 94 94 94 94 94 94 94 94 94 9	5 5,9 0 26,0 0 2,2 1 2,6 0 6,6 0 1,8 0 7 0 11,6 91,5 0 8,6 100,1 M Per Squa lare ft. Per	940 070 287 633	0 0	775	7
2A-Obw: Wall-Frame, no insulation in stud cavity, no 165 board insulation, brick finish, wood studs, U-value 0.5 3 3AA-Ooc: Wall-Block, no blanket or board insulation, or, or, et. 4'laor dawning, no interior finish, open core, U-value 0.584 160 5A-253oc-4: Wall-Basement, concrete block wall, R-2 160 foam board to 3', no framing, no interior finish, open core, U-value 0.6 61 ayered FG Batts: Roof/Ceiling-Under Attic with 1470 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 200 opes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof 200 Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 1350 112 110 1110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 1350 0.1 125 43 at Blown In.Poor: Roof/Ceiling-Under Attic with 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 147 0.1 650 43 Subtotals for struc	 26,0 2,2 2,6 2,6 2,6 6,6 1,8 1,8 1,8 1,8 1,8 91,5 91,5 8,6 100,1 M Per Squalare ft. Per Term 	070 287 633	0		
board insulation, brick finish, wood studs, U-value 0.5 SAA-0oc: Wall-Block, no blanket or board insulation, 620 2 open core, U-value 0.584 SA-2s3oc-4: Wall-Basement, concrete block wall, R-2 160 foam board to 3', no framing, no interior finish, open core, 4' floor depth, U-value 0.128 SAA-0oc: Wall-Block, no blanket or board insulation, 61 open core, U-value 0.6 ayered FG Batts: Roof/Ceiling-Under Attic with 1470 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 opes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof 200 Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 0.125 at Blown In.Poor: Roof/Ceiling-Under Attic with 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 OA-0tp: Floor-Over enclosed crawl space, No insulation 1350 1 on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 Subtotals for structure: 9 People: 43 'quipment: ighting: 650 Ductwork: filtration: Winter CFM: 110, Summer CFM: 110 'entilation: Winter CFM: 0, Summer CFM: 0 ED Excursion: 'otal Building Load Totals: 100 Check Figures otal Building Load Totals: 100 CFM Per Sc gaure ft. of Room Area: 3,090 Square ft. P olume (ft*): 12,000*** **Indicated volume is based on custom building volume. building Loads otal Heating Required Including Ventilation Air: 100,130 Btuh 10 otal Latent Gain: 9,977 Btuh	 26,0 2,2 2,6 2,6 2,6 6,6 1,8 1,8 1,8 1,8 1,8 91,5 91,5 8,6 100,1 M Per Squalare ft. Per Term 	070 287 633	0		
3AA-0oc: Wall-Block, no blanket or board insulation, open core, U-value 0.584 620 2 5A-2s3oc-4: Wall-Basement, concrete block wall, R-2 160 foam board to 3; no framing, no interior finish, open core, 4' floor depth, U-value 0.128 160 3AA-0oc: Wall-Block, no blanket or board insulation, open core, U-value 0.6 61 ayered FG Batts: Roof/Ceiling-Under Attic with 1470 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 200 Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 0.125 200 at Blown In.Poor: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 110 OA-0tp: Floor-Over enclosed crawl space, No insulation on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 1350 1 Subtotals for structure: 9 Veople: 43 iquipment: ighting: 650 Ductwork: fiftration: Winter CFM: 110, Summer CFM: 110 100 Check Figures 3,090 Square ft. P olume (ft ³): 12,000**** **Indicated volume is based on custom building volume. 50 50 Square ft. of	 2,2 2,6 6,6 1,8 1,8 1,8 1,8 1,8 91,5 8,6 100,1 M Per Squalare ft. Pe	287 633		3,404	
open core, U-value 0.584 SA-2530c-4: Wall-Basement, concrete block wall, R-2 foam board to 3', no framing, no interior finish, open core, 4' floor depth, U-value 0.128 BAA-00c: Wall-Block, no blanket or board insulation, open core, U-value 0.6 ayered FG Batts: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 opes. Eaves-ad: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 0.125 at Blown In.Poor: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 BA-0tp: Floor-Over enclosed crawl space, No insulation on exposed walls, sealed or vented space, passive, on oftoor insulation, tile or vinyl, U-value 0.368 Subtotals for structure: 9 People: 43 Customs: 10 Check Figures 10 CFM Per Sc Square ft. of Room Area: 3,090 Square ft. P Cotal Building Load 10 CFM Per Sc Square ft. of Room Area: 3,090 Square ft. P Cotal Building Required Including Ventilation Air: 100,130 Btuh 10 Cotal Sensible Gain: 10	 2,2 2,6 6,6 1,8 1,8 1,8 1,8 1,8 91,5 8,6 100,1 M Per Squalare ft. Pe	287 633		0,707	3,4
5A-2s3oc-4: Wall-Basement, concrete block wall, R-2 160 foam board to 3', no framing, no interior finish, open 61 core, 4' floor depth, U-value 0.128 3AA-0oc: Wall-Block, no blanket or board insulation, open core, U-value 0.6 ayered FG Batts: Roof/Ceiling-Under Attic with 1470 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 200 opes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof 200 Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 0.125 at Blown In.Poor: Roof/Ceiling-Under Attic with 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 1350 0.1 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 1350 0.1 110 Insulation, tile or vinyl, U-value 0.368 43 Subtotals for structure: 9 9 People: 43 43 iguipment: 650 9 ighting: 650 50 Ductwork: 10 50 filtration: Winter CFM: 110, Summer CFM: 0 ED Excursion: <td>1 2,6 0 6,6 0 1,8 0 7 0 11,6 91,5 3 91,5 3 91,5 3 91,5 3 91,5 4 Per Squa lare ft. Per</td> <td>633</td> <td>0</td> <td></td> <td>0,7</td>	1 2,6 0 6,6 0 1,8 0 7 0 11,6 91,5 3 91,5 3 91,5 3 91,5 3 91,5 4 Per Squa lare ft. Per	633	0		0,7
foam board to 3', no framing, no interior finish, open core, 4' floor depth, U-value 0.128 3AA-0oc: Wall-Block, no blanket or board insulation, open core, U-value 0.6 ayered FG Batts: Roof/Ceiling-Under Attic with 1470 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 opes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof 200 Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 0.125 at Blown In.Poor: Roof/Ceiling-Under Attic with 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 0.1 00 AP-0tp: Floor-Over enclosed crawl space, No insulation 1350 1 on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 Subtotals for structure: 9 People: 43 Equipment: ighting: 650 Ouctwork: nfiltration: Winter CFM: 110, Summer CFM: 110 /entilation: Winter CFM: 0, Summer CFM: 0 EED Excursion: Total Building Load Totals: 10 Check Figures Total Building Supply CFM: 2,000 CFM Per Sc Square ft. of Room Area: 3,090 Square ft. P /olume (ft ³): 12,000*** **Indicated volume is based on custom building volume. Suilding Loads Total Heating Required Including Ventilation Air: 100,130 Btuh 10 Total Sensible Gain: 9,977 Btuh	1 2,6 0 6,6 0 1,8 0 7 0 11,6 91,5 3 91,5 3 91,5 3 91,5 3 91,5 4 Per Squa lare ft. Per	633	0	202	2
core, 4' floor depth, U-value 0.128 3AA-Ooc: Wall-Block, no blanket or board insulation, open core, U-value 0.6 ayered FG Batts: Roof/Ceiling-Under Attic with 1470 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 opes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof 200 Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 0.125 at Blown In.Poor: Roof/Ceiling-Under Attic with 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 at Blown In.Poor: Roof/Ceiling-Under Attic with 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 3A-Otp: Floor-Over enclosed crawl space, No insulation 1350 1 on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 Subtotals for structure: 9 People: 43 Equipment: ighting: 650 Ductwork: 110, Summer CFM: 110 Ventilation: Winter CFM: 110, Summer CFM: 110 Ventilation: Winter CFM: 0, Summer CFM: 0 XED Excursion: 100 Total Building Load Totals: 100 Check Figures Total Building Supply CFM: 2,000 CFM Per Soc Square ft. of Room Area: 3,090 Square ft. P Volume (ft ³): 12,000*** **Indicated volume is based on custom building volume. Building Loads Total Heating Required Including Ventilation Air: 100,130 Btuh 100 Total Sensible Gain: 43,448 Btuh Total Latent Gain: 9,977 Btuh	 6,6 1,8 1,8 7 11,6 91,5 8,6 100,1 M Per Squa lare ft. Per ⁻ 				-
3AA-0oc: Wall-Block, no blanket or board insulation, open core, U-value 0.6 61 ayered FG Batts: Roof/Ceiling-Under Attic with 1470 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 200 opes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof 200 Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 200 0.125 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 1350 1 0.1 94-0tp: Floor-Over enclosed crawl space, No insulation on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 9 9 Subtotals for structure: 9 9 9 People: 43 43 10 Chiltration: Winter CFM: 110, Summer CFM: 110 650 0 0 Act Descursion: 10 0 0 0 0 Challed Building Load Totals: 10 10 10 0 0 0 0 0 0 0	 6,6 1,8 1,8 7 11,6 91,5 8,6 100,1 M Per Squa lare ft. Per ⁻ 				
open core, U-value 0.6 ayered FG Batts: Roof/Ceiling-Under Attic with 1470 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 opes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof 200 Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 0.125 at Blown In.Poor: Roof/Ceiling-Under Attic with 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 OA-0tp: Floor-Over enclosed crawl space, No insulation 1350 1 on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 Subtotals for structure: 9 People: 43 equipment: ighting: 650 Ouctwork: offiltration: Winter CFM: 110, Summer CFM: 110 /entilation: Winter CFM: 0, Summer CFM: 0 KED Excursion: Total Building Load Totals: 100 Check Figures otal Building Supply CFM: 2,000 CFM Per Sec Square ft. of Room Area: 3,090 Square ft. P /olume (ft*): 12,000*** ***Indicated volume is based on custom building volume. Building Loads Total Heating Required Including Ventilation Air: 100,130 Btuh 100 otal Sensible Gain: 43,448 Btuh 'otal Latent Gain: 9,977 Btuh	 6,6 1,8 1,8 7 11,6 91,5 8,6 100,1 M Per Squa lare ft. Per ⁻ 		0	344	3
ayered FG Batts: Roof/Ceiling-Under Attic with 1470 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 opes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof 200 Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 0.125 at Blown In.Poor: Roof/Ceiling-Under Attic with 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 0.4-0tp: Floor-Over enclosed crawl space, No insulation 1350 on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 Bubtotals for structure: 9 People: 43 aquipment: ighting: 650 Ductwork: offiltration: Winter CFM: 110, Summer CFM: 110 Ventilation: Winter CFM: 0, Summer CFM: 0 VED Excursion: otal Building Supply CFM: 2,000 CFM Per Sc aquare ft. of Room Area: 3,090 Square ft. P 'olume (ft ⁹): 12,000*** **Indicated volume is based on custom building volume. Building Loads otal Heating Required Including Ventilation Air: 100,130 Btuh 10 otal Latent Gain: 9,977 Btuh) 1,8) 7) 11,6 91,5 3) 8,6 100,1 M Per Squa lare ft. Per	368			
Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Two haphazzard layes of fg batts with voids, U-value 0.063 200 opes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof 200 Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 0.125 200 at Blown In.Poor: Roof/Ceiling-Under Attic with 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 1350 9A-0tp: Floor-Over enclosed crawl space, No insulation on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 1350 Subtotals for structure: 9 People: 43 Equipment: 650 Outtwork: 650 Infiltration: Winter CFM: 110, Summer CFM: 110 650 Vectork: 10 People: 2,000 CFM Per Sc 2,000 Vector Figures 10 Total Building Load Totals: 10 Check Figures 12,000*** Total Building Supply CFM: 2,000 CFM Per Sc Square ft. of Room Area: 3,090 Square ft. P Yolume (ft ³): 12,000*** 10) 7) 11,6 91,5 3) 8,6 100,1 M Per Squa lare ft. Per		0	5,742	5,7
fg batts with volds, U-value 0.063 opes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof 200 Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 0.125 at Blown In.Poor: Roof/Ceiling-Under Attic with 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 9A-Otp: Floor-Over enclosed crawl space, No insulation 1350 1 on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 Subtotals for structure: 9 People: 43 Equipment: .ighting: 650 Ductwork: nfiitration: Winter CFM: 110, Summer CFM: 110 /entilation: Winter CFM: 0, Summer CFM: 0 KED Excursion: 100 Check Figures Total Building Load Totals: 100 Check Figures Total Building Supply CFM: 2,000 CFM Per Sc Square ft. of Room Area: 3,090 Square ft. P /olume (ft ³): 12,000*** **Indicated volume is based on custom building volume. Building Loads Total Heating Required Including Ventilation Air: 100,130 Btuh 10 Total Sensible Gain: 43,448 Btuh Total Latent Gain: 9,977 Btuh) 7) 11,6 91,5 3) 8,6 100,1 M Per Squa lare ft. Per				
opes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof 200 Deck and Ceiling or Foam Encapsulated Roof Joists, 200 Custom, FG in eaves Slopes, dark asphalt, U-value 0.125 lat Blown In.Poor: Roof/Ceiling-Under Attic with 110 Insulation on Attic Floor (also use for Knee Walls and 110 Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 9A-0tp: Floor-Over enclosed crawl space, No insulation 1350 on exposed walls, sealed or vented space, passive, 10 no floor insulation, tile or vinyl, U-value 0.368 9 Subtotals for structure: 9 People: 43 Equipment: 650 Jighting: 650 Ductwork: 650 Outcwork: 10 At Description: 10 At Description: 10 At Description: 100 Check Figures 100 Check Figures 3,090 Square ft. P Colume (ft³): 12,000*** *** ***Indicated volume is based on custom building volume. 50 50 Suilding Loads 50 50 50) 7) 11,6 91,5 3) 8,6 100,1 M Per Squa lare ft. Per				
Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 0.125 lat Blown In.Poor: Roof/Ceiling-Under Attic with 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 9A-0tp: Floor-Over enclosed crawl space, No insulation 1350 1 on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 Subtotals for structure: 9 People: 43 Guipment: ighting: 650 Ouctwork: filtration: Winter CFM: 110, Summer CFM: 110 /entilation: Winter CFM: 0, Summer CFM: 0 AED Excursion: Total Building Load Totals: 10 Check Figures Total Building Supply CFM: 2,000 CFM Per Sc Square ft. of Room Area: 3,090 Square ft. P /olume (ft³): 12,000*** **Indicated volume is based on custom building volume. Building Loads Total Heating Required Including Ventilation Air: 100,130 Btuh 10 Total Sensible Gain: 43,448 Btuh Total Latent Gain: 9,977 Btuh) 7) 11,6 91,5 3) 8,6 100,1 M Per Squa lare ft. Per				
Custom, FG in eaves Slopes, dark asphalt, U-value 0.125 lat Blown In.Poor: Roof/Ceiling-Under Attic with 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 9A-0tp: Floor-Over enclosed crawl space, No insulation 1350 1 on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 Subtotals for structure: 9 People: 43 Equipment: ighting: 650 Ductwork: nfiltration: Winter CFM: 110, Summer CFM: 110 Aentilation: Winter CFM: 0, Summer CFM: 0 AED Excursion: Total Building Load Totals: 10 Check Figures Yolume (t ³): 12,000 *** **Indicated volume is based on custom building volume. Suiding Loads Total Heating Required Including Ventilation Air: 100,130 Btuh 10 Total Latent Gain: 9,977 Btuh	0 11,6 91,5 3 0 8,6 100,1 M Per Squa lare ft. Per	300	0	925	ę
0.125 lat Blown In.Poor: Roof/Ceiling-Under Attic with 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 100 0.1 94-0tp: Floor-Over enclosed crawl space, No insulation on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 1350 Subtotals for structure: 9 People: 43 Equipment: 650 ighting: 650 Outwork: 650 nfiltration: Winter CFM: 110, Summer CFM: 110 /entilation: Winter CFM: 0, Summer CFM: 0 XED Excursion: 100 Total Building Load Totals: 100 Check Figures 12,000**** **Indicated volume is based on custom building volume. 3,090 Square ft. of Room Area:	0 11,6 91,5 3 0 8,6 100,1 M Per Squa lare ft. Per				
Interview 110 Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 1350 Image: Partition Ceilings), Custom, fiberglass.Poor, U-value 0.368 1350 Image: Partition Ceilings, Sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 1350 Subtotals for structure: 9 People: 43 Equipment: 650 Ductwork: 650 Infiltration: Winter CFM: 110, Summer CFM: 110 650 Ventilation: Winter CFM: 0, Summer CFM: 0 650 AED Excursion: 10 Total Building Load Totals: 10 Check Figures 100 Yolume (ft ³): 12,000 CFM Per Sc 3090 Square ft. P Yolume (ft ³): 12,000**** **Indicated volume is based on custom building volume. 100 Suilding Loads 100 Total Heating Required Including Ventilation Air:	0 11,6 91,5 3 0 8,6 100,1 M Per Squa lare ft. Per				
Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 9A-0tp: Floor-Over enclosed crawl space, No insulation on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 Subtotals for structure: 9 People: 43 Equipment: ighting: 650 Ouctwork: nfiltration: Winter CFM: 110, Summer CFM: 110 /entilation: Winter CFM: 0, Summer CFM: 110 /entilation: Winter CFM: 0, Summer CFM: 0 XED Excursion: Total Building Load Totals: 10 Check Figures Total Building Supply CFM: 2,000 CFM Per Sc Square ft. of Room Area: 3,090 Square ft. P /olume (ft ³): 12,000*** **Indicated volume is based on custom building volume. Suilding Loads Total Heating Required Including Ventilation Air: 100,130 Btuh 10 Total Sensible Gain: 43,448 Btuh Total Latent Gain: 9,977 Btuh	0 11,6 91,5 3 0 8,6 100,1 M Per Squa lare ft. Per				
Partition Ceilings), Custom, fiberglass.Poor, U-value 0.1 9A-0tp: Floor-Over enclosed crawl space, No insulation 1350 1 on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 Subtotals for structure: 9 People: 43 Equipment: ighting: 650 Ouctwork: nfiltration: Winter CFM: 110, Summer CFM: 110 /entilation: Winter CFM: 0, Summer CFM: 0 AED Excursion: Total Building Load Totals: 10 Check Figures Total Building Supply CFM: 2,000 CFM Per Sc Square ft. of Room Area: 3,090 Square ft. P /olume (ft ³): 12,000*** **Indicated volume is based on custom building volume. Building Loads Total Heating Required Including Ventilation Air: 100,130 Btuh 10 Total Sensible Gain: 43,448 Btuh Total Latent Gain: 9,977 Btuh	91,5 3) 8,6 100,1 M Per Squa lare ft. Per ⁻	792	0	682	6
0.1 9A-0tp: Floor-Over enclosed crawl space, No insulation on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 1350 1 Subtotals for structure: 9 People: 43 Equipment: 650 Ductwork: 650 Ductwork: 650 nfiltration: Winter CFM: 110, Summer CFM: 110 /entilation: Winter CFM: 0, Summer CFM: 0 XED Excursion: Total Building Load Totals: Total Building Supply CFM: 2,000 CFM Per Sc Square ft. of Room Area: 3,090 Square ft. of Room Area: 12,000**** **Indicated volume is based on custom building volume. Suilding Loads 43,448	91,5 3) 8,6 100,1 M Per Squa lare ft. Per ⁻				
9A-Otp: Floor-Over enclosed crawl space, No insulation 1350 1 on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 9 Subtotals for structure: 9 People: 43 Equipment: 650 Ductwork: 650 nofiltration: Winter CFM: 110, Summer CFM: 110 650 Ventilation: Winter CFM: 0, Summer CFM: 0 10 AED Excursion: 10 Fotal Building Load Totals: 10 Check Figures 12,000 Colume (ft ³): 12,000 Yolume (ft ³): 12,000*** ***Indicated volume is based on custom building volume. 30 Building Loads 100,130 Btuh Total Sensible Gain: 43,448 Btuh Fotal Latent Gain: 9,977 Btuh	91,5 3) 8,6 100,1 M Per Squa lare ft. Per ⁻				
on exposed walls, sealed or vented space, passive, no floor insulation, tile or vinyl, U-value 0.368 Subtotals for structure: People: Gamma Structure: Subtotals for struct	91,5 3) 8,6 100,1 M Per Squa lare ft. Per ⁻	200	0	1 0 10	
no floor insulation, tile or vinyl, U-value 0.368 Subtotals for structure: 9 People: 43 Equipment: Lighting: 650 Ductwork: nfiltration: Winter CFM: 110, Summer CFM: 110 /entilation: Winter CFM: 0, Summer CFM: 0 AED Excursion: Total Building Load Totals: 10 Check Figures Total Building Supply CFM: 2,000 CFM Per So Square ft. of Room Area: 3,090 Square ft. P /olume (ft³): 12,000*** ***Indicated volume is based on custom building volume. Building Loads Total Heating Required Including Ventilation Air: 100,130 Btuh 10 Total Sensible Gain: 43,448 Btuh Fotal Latent Gain: 9,977 Btuh	3) 8,6 100,1 M Per Squa lare ft. Per ⁻	539	0	1,940	1,9
Subtotals for structure: 9 People: 43 Equipment: 650 Jighting: 650 Ductwork: 650 nfiltration: Winter CFM: 110, Summer CFM: 110 650 Ventilation: Winter CFM: 0, Summer CFM: 0 650 AED Excursion: 10 Fotal Building Load Totals: 10 Check Figures 10 Check Figures 12,000 K** Yolume (ft ³): 12,000 K** Chail Building Loads 100,130 Building Loads 100,130 Total Heating Required Including Ventilation Air: 100,130 Building Loads 43,448 Total Sensible Gain: 43,448 Fotal Latent Gain: 9,977	3) 8,6 100,1 M Per Squa lare ft. Per ⁻				
People: 43 Equipment: 650 Lighting: 650 Ductwork: 650 Infiltration: Winter CFM: 110, Summer CFM: 110 650 /entilation: Winter CFM: 0, Summer CFM: 0 650 AED Excursion: 650 Fotal Building Load Totals: 10 Check Figures 10 Check Figures 10 Check Figures 12,000 Course (ft. of Room Area: 3,090 Square ft. of Room Area: 3,090 Square ft. P 12,000*** ***Indicated volume is based on custom building volume. 50 Suilding Loads 100,130 Btuh Fotal Heating Required Including Ventilation Air: 100,130 Btuh 10 Fotal Sensible Gain: 43,448 Btuh 10 Fotal Latent Gain: 9,977 Btuh 10	3) 8,6 100,1 M Per Squa lare ft. Per ⁻				
Equipment: Lighting: 650 Ouctwork: Infiltration: Winter CFM: 110, Summer CFM: 110 /entilation: Winter CFM: 0, Summer CFM: 0 AED Excursion: Total Building Load Totals: 100 Check Figures Total Building Supply CFM: 2,000 CFM Per So Square ft. of Room Area: 3,090 Square ft. P /olume (ft ³): 12,000*** **Indicated volume is based on custom building volume. Building Loads Total Heating Required Including Ventilation Air: 100,130 Btuh 100 Total Sensible Gain: 43,448 Btuh Total Latent Gain: 9,977 Btuh) 8,6 100,1 M Per Squa lare ft. Per ⁻	525	0	28,670	28,6
Lighting: 650 Ductwork: Infiltration: Winter CFM: 110, Summer CFM: 110 /entilation: Winter CFM: 0, Summer CFM: 0 AED Excursion: Total Building Load Totals: 10 Check Figures Total Building Supply CFM: 2,000 CFM Per So Square ft. of Room Area: 3,090 Square ft. P /olume (ft ³): 12,000*** **Indicated volume is based on custom building volume. Building Loads Total Heating Required Including Ventilation Air: 100,130 Btuh 10 Total Sensible Gain: 43,448 Btuh Total Latent Gain: 9,977 Btuh	8,6 100,1 M Per Squa lare ft. Per		8,600	9,890	18,4
Ductwork: nfiltration: Winter CFM: 110, Summer CFM: 110 /entilation: Winter CFM: 0, Summer CFM: 0 AED Excursion: Total Building Load Totals: Total Building Supply CFM: Check Figures Total Building Supply CFM: Cotal Building Supply CFM: Total Seased on custom building volume. Building Loads Total Heating Required Including Ventilation Air: Total Sensible Gain: Total Latent Gain: Total Catent C	8,6 100,1 M Per Squa lare ft. Per		0	1,100	1,1
nfiltration: Winter CFM: 110, Summer CFM: 110 /entilation: Winter CFM: 0, Summer CFM: 0 AED Excursion: Total Building Load Totals: Total Building Supply CFM: 2,000 CFM Per So Square ft. of Room Area: 3,090 Square ft. P /olume (ft ³): 12,000*** **Indicated volume is based on custom building volume. Building Loads Total Heating Required Including Ventilation Air: 100,130 Btuh 10 Total Sensible Gain: 43,448 Btuh Total Latent Gain: 9,977 Btuh	100,1 M Per Squa lare ft. Per ⁻	•		2,217	2,2
/entilation: Winter CFM: 0, Summer CFM: 0 AED Excursion: Total Building Load Totals: Total Building Supply CFM: Square ft. of Room Area: Square ft. of Room Area: /olume (ft ³): **Indicated volume is based on custom building volume. Building Loads Total Heating Required Including Ventilation Air: Total Heating Required Including Ventilation Air: Total Sensible Gain: Total Latent Gain: 9,977 Btuh	100,1 M Per Squa lare ft. Per ⁻	0	0	0	0.0
AED Excursion: 10 Fotal Building Load Totals: 10 Check Figures 10 Fotal Building Supply CFM: 2,000 CFM Per So Square ft. of Room Area: 3,090 Square ft. P /olume (ft³): 12,000*** **Indicated volume is based on custom building volume. Building Loads 5 100,130 Btuh 10 Total Heating Required Including Ventilation Air: 100,130 Btuh 10 Fotal Sensible Gain: 43,448 Btuh 10 Fotal Latent Gain: 9,977 Btuh 10	/I Per Squa are ft. Per [−]		1,377	1,435	2,8
Fotal Building Load Totals: 10 Check Figures 10 Fotal Building Supply CFM: 2,000 CFM Per Soc Square ft. of Room Area: 3,090 Square ft. P /olume (ft³): 12,000*** **Indicated volume is based on custom building volume. Building Loads 100,130 Btuh 10 Fotal Heating Required Including Ventilation Air: 100,130 Btuh 10 Fotal Sensible Gain: 43,448 Btuh 10 Fotal Latent Gain: 9,977 Btuh 10	/I Per Squa are ft. Per [−]	0	0	0	
Check Figures Total Building Supply CFM: 2,000 CFM Per So Square ft. of Room Area: 3,090 Square ft. P Yolume (ft ³): 12,000*** **Indicated volume is based on custom building volume. Building Loads Total Heating Required Including Ventilation Air: 100,130 Btuh 10 Total Sensible Gain: 43,448 Btuh Total Latent Gain: 9,977 Btuh	/I Per Squa are ft. Per [−]	0	0	137	1
total Building Supply CFM: 2,000 CFM Per Solution iquare ft. of Room Area: 3,090 Square ft. P iolume (ft ³): 12,000*** Square ft. P t*Indicated volume is based on custom building volume. Square ft. P tuilding Loads Square ft. P total Heating Required Including Ventilation Air: 100,130 Stal Sensible Gain: 43,448 total Latent Gain: 9,977	are ft. Per	130	9,977	43,448	53,4
otal Building Supply CFM:2,000CFM Per Soquare ft. of Room Area:3,090Square ft. Polume (ft³):12,000***Square ft. P**Indicated volume is based on custom building volume.uilding Loadsotal Heating Required Including Ventilation Air:100,130Btuh10otal Sensible Gain:43,448otal Latent Gain:9,977Btuh10	are ft. Per				
Equare ft. of Room Area: 3,090 Square ft. P Yolume (ft ³): 12,000*** Square ft. P **Indicated volume is based on custom building volume. Square ft. P suilding Loads Square ft. P Total Heating Required Including Ventilation Air: 100,130 Btuh 10 Total Sensible Gain: 43,448 Btuh 9,977 Btuh 10	are ft. Per	are ft.:			0.647
/olume (ft³): 12,000*** **Indicated volume is based on custom building volume. Building Loads Total Heating Required Including Ventilation Air: 100,130 Btuh 10 Total Sensible Gain: 43,448 Btuh 10 Total Latent Gain: 9,977 Btuh 10					694
Building Loads Total Heating Required Including Ventilation Air: 100,130 Btuh 100 Total Sensible Gain: 43,448 Btuh 100 Total Latent Gain: 9,977 Btuh 100	100.1				
Total Heating Required Including Ventilation Air:100,130Btuh10Total Sensible Gain:43,448BtuhTotal Latent Gain:9,977Btuh	100.1				
otal Heating Required Including Ventilation Air: 100,130 Btuh 10 otal Sensible Gain: 43,448 Btuh otal Latent Gain: 9,977 Btuh	100.1				
otal Sensible Gain: 43,448 Btuh otal Latent Gain: 9,977 Btuh			1		
otal Latent Gain: 9,977 Btuh		130 MBH			
		130 MBH 81 %			
		81 %	(Based)	On Sensible	+ Latent
lotes		81 % 19 %	(
these services an ACCA approved Manual J, D and S computer program.		81 % 19 %			

Be sure to select a unit that meets both sensible and latent loads according to the manufacturer's performance data at your design conditions.

Hopkinton Grange Tier Three HVAC Load Calculations

for

Town Of Henniker

Henniker NH 03242

Prepared By:

Margaret Dillon S.E.E.D.S.

603-532-8979 Sunday, October 22, 2023

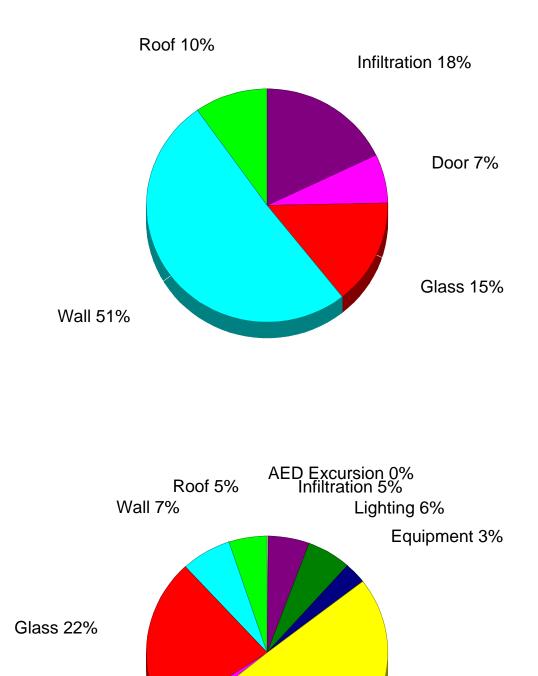
Rhvac is an ACCA approved Manual J, D and S computer program. Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

Rhvac - Residential & Li S.E.E.D.S. Jaffrey, NH 03452	ight Commerc	ial HVAC Load	ls				oftware Development, Inc. opkinton Grange Tier Three Page 2
Project Report							
General Project Inform							
Project Title: Project Date: Client Name: Client City: Company Name: Company Representa Company Phone: Company E-Mail Addu	Hop Tue Tow Her S.E tive: Mar <u>603</u>	okinton Grang sday, Octobe n Of Hennike niker NH 032 .E.D.S. garet Dillon -532-8979	er				
Design Data							
Reference City: Building Orientation: Daily Temperature Ra Latitude: Elevation: Altitude Factor:	ange:			d AP, New Ha bor faces Nort			
Winter: Summer:	Outdoor <u>Dry Bulb</u> -2 87	Outdoor <u>Wet Bulb</u> -2.6 70	Outdoor <u>Rel.Hum</u> n/a 43%	Indoor <u>Rel.Hum</u> n/a 50%	Indoor <u>Dry Bulb</u> 70 75	Grains <u>Difference</u> n/a 19	
Check Figures							
Total Building Supply Square ft. of Room Ar Volume (ft ³): ***Indicated volume is	ea:	,	1,273 3,090 000*** g volume.		er Square ft ft. Per Ton:		0.412 995
Building Loads			5				
Total Heating Require Total Sensible Gain: Total Latent Gain: Total Cooling Require	-		27,0 9,0	963 Btuh 662 Btuh 601 Btuh 264 Btuh		% %	On Sensible + Latent)
Notes Rhvac is an ACCA ap Calculations are perfo All computed results a Be sure to select a un your design conditions	ormed per AC are estimates it that meets	CA Manual . as building u	8th Edition, use and weat	Version 2, an her may vary.			formance data at

Miscellaneous Report

Whoe of a new of the								
System 1 Existing		Outdoor	Outdoor	Outo	loor	Indoor	Indoor	Grains
Input Data		Dry Bulb	Wet Bulb	Rel.H	lum	Rel.Hum	Dry Bulb	Difference
Winter:		-2	-2.6	8	30%	n/a		n/a
Summer:		87	70	2	13%	50%	75	18.65
Duct Sizing Inputs								
	Main Trunk			<u>Runouts</u>				
Calculate:	Yes			Yes				
Use Schedule:	Yes			Yes				
Roughness Factor:	0.00300			0.01000				
Pressure Drop:	0.1000	in.wg./10)0 ft.	0.1000	in.wg	J./100 ft.		
Minimum Velocity:	0	ft./min			ft./mi			
Maximum Velocity:	900	ft./min		750	ft./mi	n		
Minimum Height:	0	in.		0	in.			
Maximum Height:	0	in.		0	in.			
Outside Air Data								
		<u>Winter</u>			nmer			
Infiltration Specified:			AC/hr	0		AC/hr		
		80	CFM		80	CFM		
Infiltration Actual:		0.400	AC/hr	0	.400	AC/hr		
Building Volume:	<u>X_</u>	12,000*	Cu.ft.	<u>X 12,0</u>	200*	Cu.ft.		
-		4,800	Cu.ft./hr	4	,800	Cu.ft./hr		
	2	<u> 0.0167</u>		<u>X 0.0</u>)167			
Total Building Infiltration:		80	CFM		80	CFM		
Total Building Ventilation:		0	CFM		0	CFM		
*Indicated volume is base	d on custom	h building v	volume.					
-								
System 1			10.51	(4.46.5)				,
Infiltration & Ventilation Se							mer Temp. Diffe	rence)
Infiltration & Ventilation La			12.52			3 X 18.65 Graii		`
Infiltration & Ventilation Se				= (1.10 X	0.988	3 X 72.00 Wint	er Temp. Differe	nce)
Winter Infiltration Specifie		0 AC/hr (8	,					
Summer Infiltration Specif	iea: 0.400	0 AC/hr (8						

Load Preview Report


Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss	Sys Htg CFM	Sys Clg CFM	Sys Act CFM	Duct Size
Building	3.11	995	3,090	27,662	9,601	37,264	34,963	460	1,273	1,273	
System 1	3.11	995	3,090	27,662	9,601	37,264	34,963	460	1,273	1,273	12x18
Zone 1			3,090	27,662	9,601	37,264	34,963	460	1,273	1,273	12x18
1-First Floor			1,350	16,990	4,549	21,539	21,023	276	782	782	87
2-Office First Floor			120	1,327	269	1,596	1,922	25	61	61	15
3-Storage Room			270	6,147	4,070	10,217	3,157	42	283	283	36
4-Basement			1,350	3,198	713	3,911	8,861	117	147	147	26

Total Building Summary Loads

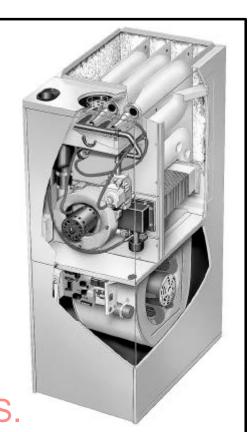
Component	Area	a Sen	Lat	Sen	Tota
Description	Quar		Gain		Gai
listoric St & IP: Glazing-Historic single pane with exterior storms and interior glazing panels, U-value 0.37, SHGC 0.5	192		0		8,34
1L: Door-Metal - Paper Honeycomb Core, U-value 0.56 P cellulose 4": Wall-Frame, Custom, Dense Pack	58.5 1951.6		0 0		59 1,86
Cellulose, U-value 0.083 2D1-0bw: Wall-Frame, R-21 closed cell 2 lb. spray foam insulation in 2 x 4 stud cavity, no board insulation, brief finish wood stude. It value 0.083	165	5 986	0	55	5
brick finish, wood studs, U-value 0.083 hermax or SPF: Wall-Block, Custom, Insulate Rim Joists, U-value 0.056	620	2,500	0	326	32
5A-2s3oc-4: Wall-Basement, concrete block wall, R-2 foam board to 3', no framing, no interior finish, open core, 4' floor depth, U-value 0.128	160) 2,287	0	202	20
hermax or SPF: Wall-Block, Custom, Insulate Rim Joists, U-value 0.083	6	1 364	0	48	2
6B-50: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Vented Attic, No Radiant Barrier, Dark Asphalt Shingles or Dark Metal, Tar and Gravel or Membrane, R-50 insulation, U-value 0.02	1580) 2,275	0	1,327	1,32
lopes. Eaves-ad: Roof/Ceiling-Roof Joists Between Roof Deck and Ceiling or Foam Encapsulated Roof Joists, Custom, FG in eaves Slopes, dark asphalt, U-value 0.08	200) 1,152	0	592	59
Subtotals for structure: People: Equipment: Lighting:	43 650		0 8,600 0	9,890	13,35 18,49 1,10 2,21
Ductwork: nfiltration: Winter CFM: 80, Summer CFM: 80 /entilation: Winter CFM: 0, Summer CFM: 0 AED Excursion:		0 6,259 0 0	0 1,001 0 0		2,04
Total Building Load Totals:		34,963	9,601	27,662	37,26
Check Figures					
Total Building Supply CFM:1,273Square ft. of Room Area:3,090Volume (ft³):12,000******Indicated volume is based on custom building volume.		M Per Square f lare ft. Per Ton			0.412 995
Building Loads	,963 Btuh	24.062	MDU		
0 1 0	,963 Blun ,662 Btuh		мыл %		
Fotal Latent Gain: 9,	,601 Btuh ,264 Btuh	26	%	d On Sensible	+ Latent)
Notes			· ·		
Rhvac is an ACCA approved Manual J, D and S computer p Calculations are performed per ACCA Manual J 8th Edition, All computed results are estimates as building use and weat Be sure to select a unit that meets both sensible and latent I your design conditions.	Version 2, ther may va	ary.		performance d	ata at

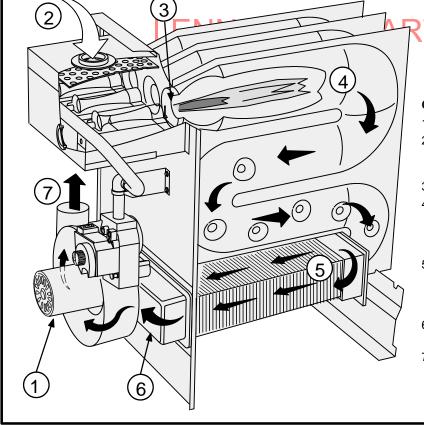
Rhvac - Residential & Light Commercial HVAC Loads	Elite Software Development, Inc.
S.E.E.D.S.	Hopkinton Grange Tier Three
Jaffrey, NH 03452	Page 6
Building Pie Chart	

Door 2%

People 50%

UNIT INFORMATION


G26 Corp. 9721-L11 Revised 07-2001


G26 SERIES UNITS

G26 series units are high-efficiency upflow gas furnaces manufactured with DuralokPlus[™] aluminized steel clamshell-type heat exchangers. G26 units are available in heating capacities of 50,000 to 125,000 Btuh and cooling applications up to 5 tons. Refer to Engineering Handbook for proper sizing.

Units are factory equipped for use with natural gas. A kit is available for conversion to LPG operation. G26-1 and -2 model units use electronic (intermittent pilot) ignition. G26-3, -4, -5 and -6 model units feature the Lennox SureLight[®] silicon nitride ignition system. Each unit meets the California Nitrogen Oxides (NO_x) Standards and California Seasonal Efficiency requirements without modification. All units use a redundant gas valve to assure safety shut-off as required by A.G.A. or C.G.A.

Information contained in this manual is intended for use by qualified service technicians only. All specifications are subject to change. Procedures outlined in this manual are presented as a recommendation only and do not supersede or replace local or state codes. In the absence of local or state codes, the guidelines and procedures outlined in this manual (except where noted) are recommended only.

G26 FURNACE▲ **4**G26 HEAT EXCHANGE ASSEMBLY

Combustion Process:

- 1. A call for heat starts the combustion air blower.
- 2. Outdoor air is drawn through pipe into the burner compartment where it mixes with gas in a conventional style inshot burner.
- 3. The SureLight ignition system lights the burners.
- 4. Combustion products are drawn downward through the heat exchanger. Heat is extracted as indoor air passes across the outside surface of the metal.
- 5. Latent heat is removed from the combustion products as air passes through the coil. Condensate (water) is formed as the combustion products cool.
- 6. As the combustion products exit the coil, condensate is collected and drained away.
- 7. Combustion products are pulled from the heat exchanger and forced into the flue.

Downloaded from www.Manualslib.com manuals search engine

)) Technical

SPECIFICATIONS

	Model No.		G26Q3/4-100	G26Q4/5-100	G <mark>26Q3/4-125</mark>	G26Q4/5-125					
Input Btuh (kW)			100,00	00 (29.3)	125,00	0 (36.6)					
Output Btuh (kW)			91,000 (26.7)	93,000 (27.2)	115,000 (33.7)	116,000 (34.0)					
☆A.F.U.E.			92.0%	92.0%	91.0%	92.0%					
California Seasonal Effic	ciency		86.6%	85.8%	87.5%	87.0%					
Exhaust pipe connect	tion (PVC) diameter-	— in. (mm)		2	(51)	•					
Intake pipe connection	n (PVC) diameter—	in. (mm)		3	(76)						
Condensate drain conne	ection (PVC)— in. (n	nm)		1/2	(12.7)						
Temperature rise range	— °F (°C)		50-80 (28-44)	40-70 (22-39)	55-85 (31-47)	50-80 (28-44)					
High static certified by (/	A.G.A./C.G.A.) — in	. wg. (Pa)		.50) (125)	•					
Gas Piping Size I.P.S.			1		1/2						
Natural or LPG/propane		mm	12.7								
Blower wheel nominal		in.	10 x 10	10 x 10 11-1/2 x 9 10 x 10		11-1/2 x 9					
diameter	diameter x width		254 x 254	254 x 254 292 x 229 254 x 2		292 x 229					
Blower motor output —	hp (W)		1/2 (373)	3/4 (560)	1/2 (373)	3/4 (560)					
Nominal	cooling	Tons	2 to 4	3-1/2 to 5	2 to 4	3-1/2 to 5					
that can b	be added	kW	7.0 to 14.1	12.3 to 17.6	7.0 to 14.1	12.3 to 17.6					
Shipping weight — lbs.	(kg) 1 package		186 (84)	198 (90)	218 (99)	218 (99)					
Electrical characteristics			120 volts — 60 hertz — 1 phase (all models) (less than 12 amps)								
		 Optional Acces 	sories (Must Be O	rdered Extra) 🗢							
LPG/Propane kit (option	nal)		65K27 (all models)								
Filter and Filter Rack F ‡No. & size of filters -			Single (44J21) Ten Pack (66K62) (1) 20 x 25 x 1 (508 x 635 x 25)								
Concentric Vent/Intake A	Air/Roof Termination	Kit (optional)	33K97 — 2 inch (51 mm)								
1 Vent/Intak	ke Air Roof	2 inch (51 mm)	FMPA	RISC	5F75						
Termination Kit (opt		3 inch (76 mm)		4	4J41						
⊡Vent/Intake Air Wall		2 inch (51 mm)	15F74 (ring k 3	kit) — 22G44 (close o 0G79 (WTKX close o	couple) — 30G28 (WTH couple with extension ris	K close couple) ser)					
Termination Kit (opt	uonai) — vent size	3 inch (76 mm)	44J40 (close couple) — 81J20 (WTK close couple)								
Twinning Kits	Twinning Kits Non-continuous low sp		64H88 (all models)								
(optional)	Continuous low sp	beed	35J93 (all models)								
Continuous Low Speed	Blower Switch (option	onal)	44J06 (-1 and -2 models) Not used with Twinning Kits								

Annual Fuel Utilization Efficiency based on U.S. DOE test procedures and FTC labeling regulations. Isolated combustion system rating for non-weatherized furnaces. Polyurethane frame type filter. Determine from venting tables proper intake and exhaust pipe size and termination kit required. NOTE - 2 inch x 3 inch (51 mm x 76 mm) adaptor is furnished with -100 and -125 furnaces for exhaust pipe connection.

BLOWER PERFORMANCE DATA FILTER AIR RESISTANCE

cfm (L/s)	in. w.g. (Pa)
0 (0)	0.00 (0)
200 (95)	0.01 (0)
400 (190)	0.03 (5)
600 (285)	0.04 (10)
800 (380)	0.06 (15)
1000 (470)	0.09 (20)
1200 (565)	0.12 (30)
1400 (660)	0.15 (35)
1600 (755)	0.19 (45)
1800 (850)	0.23 (55)
2000 (945)	0.27 (65)
2200 (1040)	0.33 (80)
2400 (1130)	0.38 (95)
2600 (1225)	0.44 (110)

BLOWER PERFORMANCE DATA G26Q3/4-100 BLOWER PERFORMANCE

Externa	I Static	Air Volume and Motor Watts at Specific Blower Taps													
Pres	sure	High			М	Medium-High			Medium-Low			Low			
in. w.g.	Pa	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts		
0	0	2065	975	920	1760	830	735	1570	740	655	1245	590	520		
.10	25	2000	945	875	1730	815	705	1550	730	625	1240	585	490		
.20	50	1925	910	845	1685	795	675	1515	715	590	1225	580	470		
.30	75	1840	870	800	1625	765	630	1475	695	565	1210	570	455		
.40	100	1740	820	760	1550	730	595	1415	670	535	1165	550	430		
.50	125	1650	780	730	1460	690	560	1335	630	500	1110	525	405		
.60	150	1545	730	700	1370	645	530	1260	595	475	1045	495	385		
.70	175	1420	670	660	1250	590	495	1170	550	445	950	450	355		
.80	200	1270	600	620	1110	525	445	1025	485	395	825	390	325		
.90	225	1045	495	560	965	455	405	885	420	360	700	330	290		

NOTE — All air data is measured external to unit with 1 in. (25 mm) cleanable foam filter (not furnished) in place. Also see Filter Air Resistance table.

G26Q4/5-100 BLOWER PERFORMANCE

Externa	I Static	Air Volume and Motor Watts at Specific Blower Taps															
Pressure		High			Me	Medium-High			Medium			Medium-Low			Low		
in. w.g.	Pa	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts	
0	0	2400	1135	1255	2185	1030	1070	1940	915	905	1740	820	765	1570	740	665	
.10	25	2350	1110	1230	2150	1015	1055	1920	905	885	1710	805	755	1525	720	645	
.20	50	2290	1080	1185	2105	995	1025	1875	885	865	1685	795	740	1505	710	640	
.30	75	2225	1050	1170	2060	970	1005	1845	870	850	1655	780	730	1485	700	630	
.40	100	2165	1020	1130	2010	950	985	1805	850	835	1620	765	720	1450	685	620	
.50	125	2105	995	1115	1950	920	960	1755	830	810	1585	750	700	1415	670	605	
.60	150	2040	965	1080	1895	895	940	1700	800	790	1540	725	690	1380	650	595	
.70	175	1955	925	1045	1820	860	915	1640	775	775	1475	695	670	1340	630	590	
.80	200	1850	875	1005	1730	815	885	1580	745	755	1430	675	660	1290	610	580	
.90	225	1770	835	985	1650	780	855	1505	710	740	1370	645	645	1225	580	565	

NOTE — All air data is measured external to unit with 1 in. (25 mm) cleanable foam filter (not furnished) in place. Also see Filter Air Resistance table.

G26Q3(4-125 BLOWER PERFORMANCE

External Static Pressure					Air Volu	ime and	Motor Wat	tts at Spe	cific Blo	wer Taps			
		High			М	Medium-High			Medium-Low			Low	
in. w.g.	Pa	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts
0	0	2070	975	920	1735	820	725	1555	735	640	1235	585	500
.10	25	2010	950	885	1710	805	700	1535	725	625	1225	580	490
.20	50	1950	920	850	1675	790	680	1500	710	600	1210	570	470
.30	75	1975	930	820	1620	765	645	1465	690	575	1185	560	455
.40	100	1785	840	775	1560	735	615	1415	670	545	1140	540	435
.50	125	1700	800	745	1475	695	575	1345	635	520	1090	515	415
.60	150	1585	750	705	1410	665	555	1275	600	490	1035	490	390
.70	175	1475	695	675	1310	620	515	1185	560	460	975	460	370
.80	200	1350	635	640	1200	565	485	1090	515	425	865	410	340
.90	225	1200	565	595	1080	510	445	965	455	385	715	335	300

NOTE — All air data is measured external to unit with 1 in. (25 mm) cleanable foam filter (not furnished) in place. Also see Filter Air Resistance table.

G26Q4/5-125 BLOWER PERFORMANCE

Externa	al Static					Air Vo	ume and	d Motor	Watts	at Specif	ic Blow	/er Taps	6				
Pressure		High			Me	Medium-High			Medium			Medium-Low			Low		
in. w.g.	Ра	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts	cfm	L/s	Watts	
0	0	2400	1135	1210	2175	1025	1040	1965	925	895	1790	845	780	1610	760	670	
.10	25	2315	1090	1175	2125	1005	1025	1930	910	875	1760	830	770	1580	745	660	
.20	50	2255	1065	1150	2080	980	1000	1880	885	860	1740	820	755	1550	730	645	
.30	75	2195	1035	1130	2030	960	975	1840	870	835	1710	805	750	1520	715	635	
.40	100	2120	1000	1100	1970	930	960	1790	845	815	1665	785	730	1495	705	630	
.50	125	2050	965	1080	1910	900	934	1745	825	800	1620	765	715	1460	690	620	
.60	150	1985	935	1050	1840	870	905	1685	795	785	1565	740	705	1415	670	610	
.70	175	1885	890	1020	1770	835	890	1635	765	775	1515	715	685	1370	645	595	
.80	200	1815	855	1005	1690	800	860	1570	740	750	1450	685	670	1315	620	580	
.90	225	1735	820	980	1615	760	835	1485	700	725	1385	655	655	1245	590	565	

NOTE — All air data is measured external to unit with 1 in. (25 mm) cleanable foam filter (not furnished) in place. Also see Filter Air Resistance table.

Energy Audit

Funded by

Town Hall

18 Depot

Henniker, NH

November 15, 2023

Table of Contents

Introduction	3
Executive Summary	3-4
Envelope Values & Units	5
Heating & Cooling Loads	6
Oil Boiler VS Heat Pumps	7-8
Historic Energy Use & Analysis	9-10
Floorplan Graphics	11-12
Thermostat Set-Backs	13
Description of ESM with IR Images	14-18
Second Floor IR	19-20
Heating & Cooling Equipment	21
Exterior Photos	22
Mural—Just Because	23
Appendix	
Heat Transfer Basics	24
Elite RHVAC Load Calc Reports	
Existing Conditions	25-30
Improved	31-37
Energy Analysis Oil as Primary	38-43
Energy Analysis ASHP as Primary	44-52
Mitsubishi Heat Pump Submittals	53-63

Introduction

This Energy Audit has been funded by Eversource. Funds may, or may not, also be available to help reduce cost for eligible Energy Saving Measures (ESM) including weatherization efforts and equipment upgrades.

The purpose of an energy audit is to identify energy saving measures (ESM) in a building. Computer simulated energy models are developed to estimate energy consumption based on the local climate conditions, physical dimensions and characteristics of a building, mechanical systems, presumed lighting, equipment, and occupancy patterns, in addition to a number of other variables.

With the building modeled in existing conditions, energy savings can be estimated for improvements to the thermal envelope and/or more efficient mechanical systems. The cost of those measures can then be analyzed in terms of predicted energy saved and savings potential from converting to different sources of energy. The primary objective is to evaluate the level of investment warranted by energy and dollars saved from those specific measures.

This audit has been prepared with the best of intentions to assist the Town of Henniker make informed decisions regarding energy saving improvements in keeping with long term goals for the property. We do not make any warranty, expressed or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed.

Executive Summary

Henniker's Town Offices are located in the fist floor of the Henniker Meeting House. Constructed in 1787 as a wood framed structure on a granite and rubble stone foundation. Though now on the National Register of Historic Places, all but three of the original wood windows on the first floor had been replaced with double pane glass and vinyl or aluminum frames. The second floor meeting hall remains original, unconditioned and used for

storage. At some point it was heated via two propane fired Modine units. They remain attached to the ceiling but not used and no known propane tank exists anymore.

The first floor is heated primarily by a cast iron oil fired boiler and hydronic baseboard, with one main circulator pump and three zone valves. In the Fall of 2022, four outdoor heat pump condensers were installed serving both non-ducted wall units and ducted ceiling units. The primary objective was to provide cooling with only supplemental heating. Based on the assessed values of the envelope and rated capacities of the installed heat pump, this study suggests that the heat pumps could serve as primary heating more efficiently and cost effectively than the oil fired hydronic system. Testing this theory will take some experimenting, but changes to the thermostatic controls is discussed on pages seven and eight, as is the potential for using the heat pumps for primary heating.

This would be especially possible after implanting the seven recommended envelope ESM, described briefly on the next page with estimated energy and dollar savings.

Summary of Energy Saving Envelope Measures

The recommended ESM are described in more detail later in this report.

The chart below summarizes the estimated cost of each ESM. Estimating contractor costs has become more challenging in this era of supply chain shortages and hard-to-find labor. Contacting a reliable insulation and air sealing contractor is recommended for a cost proposal for the recommended measures.

ESM #	Envelope Condition / ESM	Estimated Cost of Measure
1	Double Wood Doors	\$325
2	Weather-Stripping	\$450
3	Cellular Shades	\$1,260
4	Insulate Entry Walls	\$1,675
5	Limited Ceiling Insulation	\$1,768
6	Insulate FND and Door	\$2,325
7	Dense Pack Walls	\$10,517
	Total Estimated Cost	\$18,320

An investment of an estimated \$18,320 is predicted to save at least \$1,437 in energy (oil) costs at the two year average cost of \$3.17 per gallon, and \$0.13 per kWh. This would result in a simple payback within 12.7 years. Since ESM continue to save energy for the life of each measure, this also results in a minimum annual return on investment (ROI) of 2.7% over each of the next 25 years. Again, the savings are based on recent average energy prices. If (when) prices increase, so too will the ROI.

The ESM are presented as a whole package, because savings if completed as a package will be greater than the sum of implementing individual in a piece meal fashion.

Annual \$ Savings	\$1,437	
Simple Payback	12.7	Years
Life of Measure	25	Years
Investment Gain	\$17,605	
ROI	96.1%	At end of 25 years
Annualized ROI	2.7%	For each of 25 years
Annual Oil Savings	540	Gallons
Annual Electric Savings	1094	kWh
Site Energy Saved	78.6	Million Btu
Source Energy Saved	98.5	Million Btu
CO2 Emissions Reduction	6.79	Tons, Annually
CO2 Emissions Reduction	169.8	Tons, 25 Years

Potential Eversource incentives are based on energy saved for the cost of the measures. Contact your Eversource representative, Jack Paloulek, to determine if the project is eligible for incentives.

Assessed Values for Town Offices and Other Model Inputs

The thermal envelope is the assembly of materials which form the barrier between inside conditioned space and outdoor weather and climate. Its ability to conserve heat and manage moisture determines, primarily, the heating load or demand of a building. Continuity and thickness of insulation, in direct contact with air barrier, is key to an effective thermal barrier.

Square Feet Area (whole)	2802	
Volume (ft3) (whole)	29,910	
Design Temps	Outdoor Dry	Indoor Dry
Winter	-2	70
Summer	87	75
Reference City	Concord NH	

Summary reports for load calculations of the existing and retrofitted condition has been included at the end of this study. Below is a summary of values for existing and improved envelope components.

Envelope Component	Surface Area FT2	Assessed Effective R-Value	U-Factor	Improved U-factor	Improvement	ESM #
Single Pane Windows	28	1.27	0.79			
Double Pane Windows SHGC 0.49	326	2.6	0.38		Weather-Strip as needed	2
Glass Entry Doors	57	1.15	0.87		Weather-Strip as needed	2
Double Wood Doors 2nd floor	39	1.15	0.87	0.09	Foam board & seal	1
Lounge Entry Door	16	1.8	0.56		Weather-Strip as needed	2
Historic Frame Walls	2090	8.5	0.12		Blow in Cellulose	7
Uninsulated Walls - Entrance	200	3	0.33	0.071	Blow in cellulose	4
Slopes over Entrance	280	10	0.10	0.060	Blow in cellulose	5
FG Batts on Suspended Tiles	2110	15.5	0.06		(TBD if possible)	
Voids over Sheetrock Ceilings	272	5	0.20	0.038	Blow in cellulose	5
Floor over Crawlspace Walls SPF	2328	3	0.333			
Floor over Uninsulated Basement	474	2.0	0.50	0.083	Insulate Walls and Door	6
Air Leakage - Winter		Exist		Improved		
Volume	29910	295		195		

Other formulas used in this analysis:

Oil: 138,500 Btu per gallon for site energy Source energy: 159,275 Btu per gallon (1.15xSite)

Electric: 3412 Btu per kWh site energy. Source energy: 11,361 Btu per kWh

CO2 Emissions:

Oil: 23.25 lbs per gallon

Electric: CO2 lbs = kWh X.89

Heat loss by the thermal envelope component

	Existing	Btu/hr	ESM 1-7	Btu/hr
	Heating	Cooling	Heating	Cooling
Main Entrance	36381		23869	
Lobby	5210	2346	4893	2241
Town Clerk / Tax Collector	6043	4482	5567	4325
Assessing Office	4817	2818	4409	2683
Finance	7803	4150	5765	3682
Small RR	1499	1170	1088	1084
Large RR	3497	1955	1742	1287
Staff Lounge & Kitchen	8378	4837	7663	4599
Town Administrator	3338	2079	3065	1989
Conference Room	9150	8769	8537	8566
Planning & Selectmen	4453	2901	4090	2779
	90569	35507	70688	33235

Heating and Cooling Loads for Existing & Improved Conditions

Descriptions of ESM

ESM 1: Seal and insulate this double door. Adhere 2", min R10 rigid foam board to this side of the door in such a way that it can be removed without (much) damage and add thick weatherstripping. The result should be a tight and insulated but fully functional doorway. See Page 12.

ESM 2: Add weather-stripping to all (other) exterior doors. See page 14.

ESM 3: Replace existing blinds on south facing windows with tracked cellular shades to 1) eliminate drafts, 2) reduce heat loss, and 3) reduce summer heating and glare. See page 16.

ESM 4: Blow in cellulose or mineral wool to wall cavities in the entrance. Refer to photos on pages 16 & 17.

ESM 5: Blow cellulose into floor over lounge area. Ask contractor to explore the viability of drilling holes into floor to dense pack walls from above (ESM 7) as well as rest of floor, with fee proposal for both options. See Page 18.

ESM 6: Insulate foundation walls in the basement with two inch, foil faced, polyisocyanurate. Spray closed cell foam from foam board to under floor decking for a continuous air, vapor, and thermal barrier. Attach same foam board to access door and weather-strip. If at all possible, drill holes through concrete blocks on the south wall and inject foam to air seal the original sill/granite connection. (Office above can use the floor to keep lunch cold). Other option would be to remove the cementitious ceiling and all fiberglass—spray foam rim joists, then add mineral wool (roxul rock wool) to ceiling cavity bays and replace fire-proof barrier.

ESM 7: If impossible from floor above, remove exterior clapboard at top of 1st floor wall, drill two inch holes, and dense pack cellulose (or mineral wool) into wall cavities. SEAL holes and replace clapboards.

Cost estimates are based on other projects but need a contractor's fee proposal to verify potential incentives.

Heating Cost From Oil VS Installed Air Source Heat Pumps

A gallon of oil contains (approximate average) 138,500 Btu. Based on that average, it takes about 7.25 gallons of oil to equal one million Btu of heat. At \$2.49 a gallon and 100% efficiency, it would cost just over \$18.00 to deliver one million Btu for space heating. When factoring in the efficiency of the existing boiler, the cost to deliver one million btu about \$21.15. At \$3.17 per gallon, the cost goes up to \$26.31 per MMBTU.

Cost of Oil in existing Boiler	
Cost per MMBtu @ \$2.49/gal	\$21.15
Cost per MMBtu @ \$3.17/gal	\$26.31

We can use similar calculations to compare the cost to deliver heat from other energy sources. It's a little more complicated with electric heat pumps because the efficiency varies based on outdoor temperature and the specific heat pump equipment. The chart below offers a summary snap shot of the cost to heat with the installed heat pumps (based on published capacity and COP ratings) at three outdoor temperatures (OAT). Note that at \$0.13 per kWh, heating with ASHP is less expensive per million Btu down to 5°OAT, compared to heating with oil at \$2.49 per gallon.

Estimated Zone Loads	11716	11253	13603	24620	Average \$
Heat per kWh @ 47° OAT	13409	12420	13614	11089	
Cost per MMBtu @ \$0.13/kWh	\$9.69	\$10.47	\$9.55	\$11.72	\$10.36
Heat per kWh @ 17° OAT	8871	8018	7813	7506	
Cost per MMBtu @ \$0.13/kWh	\$14.65	\$16.21	\$16.64	\$17.32	\$16.21
Heat per kWh @ 5° OAT	6926	6415	8257	7404	
Cost per MMBtu @ \$0.13/kWh	\$18.77	\$20.27	\$15.74	\$17.56	\$18.08

However, to rely on ASHP for heating a space, it is also important to note whether the heat capacity at low temperatures is adequate to maintain indoor comfort. With one exception, the estimated heating loads per zone (above) exceed the heating capacity of the installed equipment (matching color below) at 5°OAT.

	MXZ-2C20NA3 Wall Unit	MXZ- 2C20NA3	MXZ- 3C24NA3	MXZ- 4C36NA3	Totals
Cooling Btu/hr	20000	20000	22000	36400	98400
SEER / SEER2	20/18	16/20	16/20	17.6/16	
Heating at 47°F Btu/hr	25500	25500	30600	43000	99100
Heating at 17°F Btu/hr	15000	14500	19600	26600	61200
Heating at 5°F Btu/hr	11000	10900	18200	24000	53200
COP at 47°F	3.93	3.64	3.99	3.25	3.72
COP at 17°F	2.60	2.35	2.29	2.20	2.36
COP at 5°F	2.03	1.88	2.42	2.17	2.21
Energy Star	Yes	No	No	No	
Compressor Type	DC Inverter	DC Inverter	DC Inverter	DC Inverter	
Heating Air Intake Max	5°	5°	5°	5°	
Heating Thermal Lock	-1.4	-1.4	-1.4	-1.4	
Re-start Temp	5°	5°	5°	5°	

	Existing	Btu/hr	ESM 1-7	Btu/hr	
Room Areas	Heating	Cooling	Heating	Cooling	
Main Entrance	36381		23869		Keep doors
Lobby	5210	2346	4893	2241	open to
Town Clerk / Tax Collector	6043	4482	5567	4325	main
Assessing Office	4817	2818	4409	2683	entrance
Finance	7803	4150	5765	3682	and
Small RR	1499	1170	1088	1084	restrooms
Large RR	3497	1955	1742	1287	(when not
Staff Lounge & Kitchen	8378	4837	7663	4599	in use).
Town Administrator	3338	2079	3065	1989	
Conference Room	915 0	8769	8537	8566	
Planning & Selectmen	4453	2 901	4090	2779	
Totals	90569	35507	70688	33235	

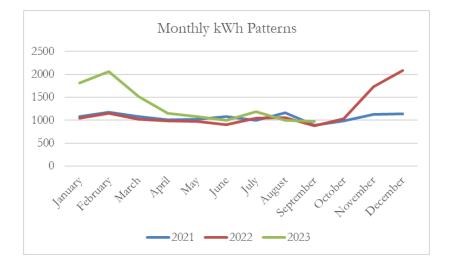
Load Reductions Following Implementing ESM 1-7

Completing all seven recommended ESM is predicted to reduce the whole building's heating load by an estimated 20,000 Btu/hr and each zone's load enough that the published heating capacity at 5°OAT may be adequate to maintain indoor comfort. The hydronic baseboard would still be available as back as needed, but potentially only when the OAT drops below 5°OAT. The premise is that in addition to saving energy, the ESM would result in being able to use the lower cost heating source.

Estimated Reduced Zone I	loads	10728	10460	12627	22174	Average \$
Heat per kWh @ 47° OAT		13409	12420	13614	11089	
Cost per MMBtu @ \$0.13/	kWh	\$9.69	\$10.47	\$9.55	\$11.72	\$10.36
Heat per kWh @ 17° OAT		8871	8018	7813	7506	
Cost per MMBtu @ \$0.13/	kWh	\$14.65	\$16.21	\$16.64	\$17.32	\$16.21
Heat per kWh @ 5° OAT		6926	6415	8257	7404	
Cost per MMBtu @ \$0.13/	kWh	\$18.77	\$20.27	\$15.74	\$17.56	\$18.08
		Z-2C20NA3 Vall Unit	MXZ- 2C20NA3	MXZ- 3C24NA3	MXZ- 4C36NA3	Totals
Cooling Btu/hr		20000	20000	22000	36400	98400
SEER / SEER2		20/18	16/20	16/20	17.6/16	
Heating at 47°F Btu/hr		25500	25500	30600	43000	99100
Heating at 17°F Btu/hr		15000	14500	19600	26600	61200
Heating at 5°F Btu/hr		11000	10900	18200	24000	53200
COP at 47°F		3.93	3.64	3.99	3.25	3.72
COP at 17°F		2.60	2.35	2.29	2.20	2.36
COP at 5°F		2.03	1.88	2.42	2.17	2.21
Energy Star		Yes	No	No	No	
Compressor Type	DC	Inverter	DC Inverter	DC Inverter	DC Inverter	

Historic Energy Use Analysis

The energy analysis below is based on the energy data provided for 2022.


Energy	Units	Site Btus	Source Btus	\$Cost
Electric - kWh	13914	47,474,568	158,076,954	\$2,017
Oil - Gallons	1864	258,164,000	296,888,600	\$5,916
Totals		305,638,568	454,965,554	\$7,933
EUI KBtu/FT2	2802	109.1	162.4	\$2.83

The Energy Utilization Index (EUI) offers a simple snapshot analysis of a building's energy use by looking at total amount of energy input (converted to Btu's) divided by the floor area of conditioned space. "Site Energy" refers to units of energy delivered to a site. Source energy includes transmission and some allowance for off site generation and other considerations.

Based on the information provided the Site EUI for 2022 was 109.1 KBtu/ft2 for the whole building. Source EUI was 162.4 KBtu/ft2, with a cost per square foot of \$2.83 per ft2 based on current energy prices. Since the per unit cost for energy can vary greatly over time, converting all forms of energy to Btus is a more useful way of looking at a building's energy demands and potential reductions from energy saving measures.

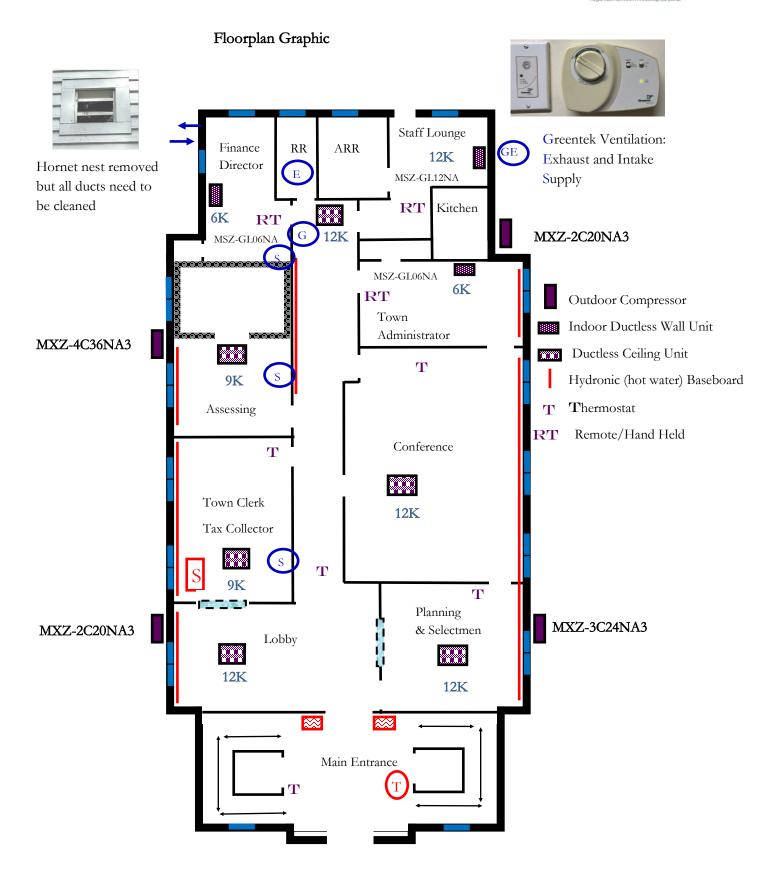
Monthly patterns of electric consumption can sometimes tell a useful story, though assumptions are never as useful as hard facts. Still, it is likely that the peak consumption pattern in the winter is due to the use of electric heating, especially in the basement where electric resistance (ER) baseboards are used to supplement the one indoor heat pump unit.

Another financial advantage of converting to heat pumps is that it offers the option for an annual offset with on-site generation of clean, renewable, and "free" solar energy.

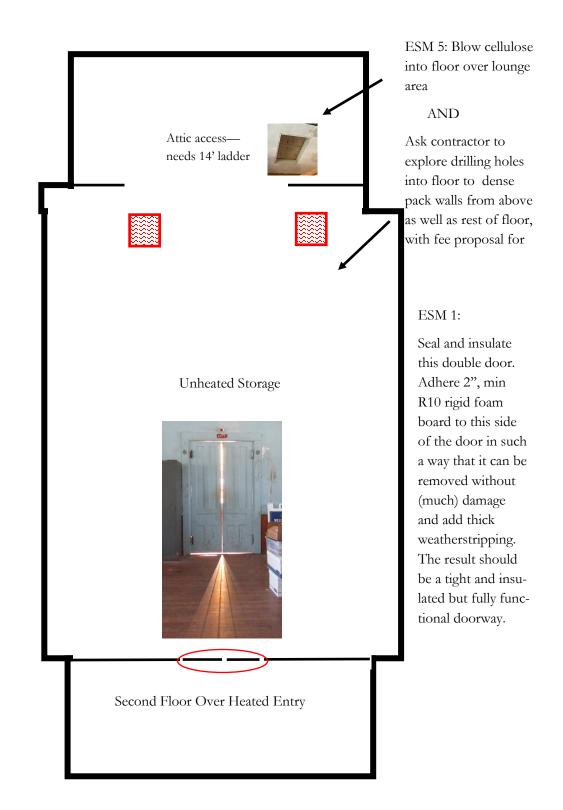
KW Demand and the Cost of Supply

The KW Demand is determined each month by the peak call for power during any 30 minute window within a billing cycle. The total charges for KW Demand in 2022 was \$159, or just under 8% of the total cost for electricity in 2022.

Corresponding with the highest usage of kWh, demand for power was highest in the coldest and hottest months of the year, most likely due to space conditioning. As noted elsewhere, heat pumps operate most efficiently when left at a stable thermostat setting. In other words: don't use setbacks for the heat pumps. (And do use deeper set backs at night and weekends when running the boiler).


Reducing electric usage saves energy and monthly costs in both the supply side (actual electricity used) and the delivery side (the very real transmission costs of delivering kWh to the meter, maintaining lines, etc).

Lowering peak demand on the regional grid plays a critical part in reducing the need to build more generation plants. It may be impacted by a reduction in kWh consumption, but is mostly determined by time and the appliance used. Customers are allowed a peak use of 5.0KW each month before incurring charges.



Energy Audit

Thermostat Set Backs

There is a bit of controversy around whether setting a thermostat to a lower temperature saves energy or not. Two common myths:

1. "Thermostat setbacks during the winter won't save you money. Any energy you saved when the thermostat was turned down will be lost because of the amount of fuel the furnace needed to get you back to a comfortable level."

2. "Setting your thermostat back will save energy, but no more than four degrees." (or 6 or some set number)

The reality is that lowering the indoor air temperature through thermostat setbacks for fuel burning equipment almost always saves heating energy because one of the factors of heat transfer is the temperature difference between inside and outside (aka delta T or Δ T): the lower the Δ T, the slower the rate of heat transfer, therefore heat loss is reduced. While its true that a furnace or boiler will run longer to bring the temperature back up to comfort levels, fossil fuel (and biomass) equipment operates more efficiently when it keeps running as opposed to turning on and off multiple times. For those two reasons, the energy saved from lower setbacks will *almost* always be more than the energy used to bring it back up to temperature. NOTE: This does NOT apply to variable speed heat pumps which operate most efficiently when left at one temperature.

But it is especially true for single stage oil fired equipment which is 'oversized'. That is when its hourly BTU output capacity far exceeds the hourly heat loss. Ideally, peak capacity will equal peak heat lost—ie the BTU/hr heat loss during the coldest hour of the location's winter, occurring 99% of the time on average. But non-modulating furnaces and boilers are frequently oversized—but as much as 50-150%. So when it comes on to satisfy the thermostat setting, it puts out a lot of heat, likely turns off fairly quickly, then on again minutes later. This on and off again is referred to as 'short cycling' and it results in low seasonal efficiency. (There are other maintenance reasons for short cycling, including a damaged flame sensor and dirty or misaligned air filters, so regular maintenance and inspections and can keep a furnace performing as efficiently as possible.)

But when a building is unoccupied overnight or for days at a time, keeping the thermostat set back means that the boiler will be off for many if not most of the winter hours, then run at its highest efficiency to recover.

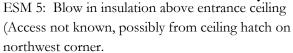
All that said, there are other considerations with thermostat set backs, especially in a building with minimal insulation levels. As surfaces cool, there is a risk of condensation forming if surface temperatures drop below the dew point, though with low interior humidity, this should be a very low risk. The other common consideration is preventing the risk of freezing pipes on exterior walls, though again, this should not be an issue in the Community Center as long as the baseboard in the meeting room restroom is left on to 45 degrees.

There is likely an 'optimal' set back temperature for the propane and oil systems in these buildings. But it is unique to each building based on the thermal performance of the envelope and which will vary for each hour as the delta T varies. I've asked contractors who recommend specific set back temperatures, why they pick 4° or 6° or whatever and the response has usually been something on the order of "because its complicated and customers won't understand. They just want simple instructions."

The mission of S.E.E.D.S. is based on the principle that to transition to a low energy, carbon neutral economy, people, as consumers, deserve to at least be offered the opportunity to understand the complexities of physics as they relate to our energy usage. For more information, check out the links below.

https://cbe.berkeley.edu/research/setpoint-energy-savings-calculator/

https://www.energyvanguard.com/blog/if-you-think-thermostat-setbacks-don-t-save-energy-you-re-wrong/ https://www.thisoldhouse.com/heating-cooling/21016013/how-thermostat-setbacks-save-money



ESM: Main Entrance

Thermographic (aka Infra Red or IR) images depict differences in surface temperatures. Darker colors indicate cooler surfaces than brighter colors. Dark "blobs" or streaks can indicate cold air leaking into the building on a cold day, or washing through low density insulation such as fiberglass. Though in this case, the voids or uninsulated and narrow wall cavities reflect the highly conductive cold brick of the exterior walls.

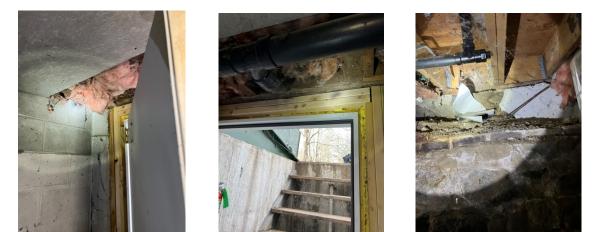
Air leakage around the three exterior doors offer a cost effective opportunity to reduce air filtration though installing professional quality weather stripping.

ESM 4: Blow in insulation into entrance's exterior wall cavities

Improving the thermal envelope* in the entrance and stairwell will save energy & dollars, but by reducing heat loss, it makes it possible to open doors to the office areas during the day and rely on heat pumps for heating.

The thermostat is set to 64.

* ESM 1, 4, 2, and 5



ESM #6: Insulate the Remaining Foundation Walls

The small basement, where the boiler and hot water tank are located, has an opening to a crawl space which presumably extends under the rest of the building. It has had spray foam applied to the foundation and which also seals a vapor barrier membrane over the floor. All this would have been recommended had it not already been accomplished!

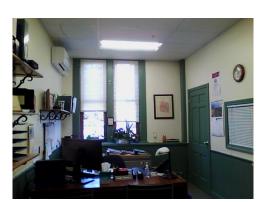
However, there have been issues with freezing pipes which is being addressed through 'expensive to run' electric resistance heat tapes. And the office and bathrooms over the basement have very cold floors. The fiberglass in the ceiling shows the effect of air filtration, which means its barely serving as any insulation at all. So the recommendation is continue insulating the foundation walls and add R12 Thermax board to the door and air seal.

It appears that a block wall has been added to the interior of the original granite and stone foundation, and a cementitious ceiling board added above the boiler to serve as a fire barrier. The exterior granite and sill may be able to be accessed—and foam sealed—but cutting into or removing the fire board and then replacing. If so, it is worth doing if mostly for the benefit of comfort to the finance office above. (Though it will also save energy)

ESM #7 and #3

Wall cavities appear to have insulation material but it has settled in some cavities and appears 'performance-compromised' in others.

The objective of ESM 7 is to dense pack cellulose into each cavity—filling voids and compressing what already exists.

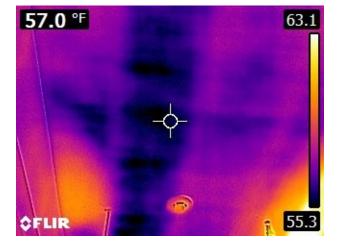

ESM #3 is intending to reduce drafts but also add "R-value" to the existing windows and frames by replacing the light filtering shades with insulated and tracked cellular shades.

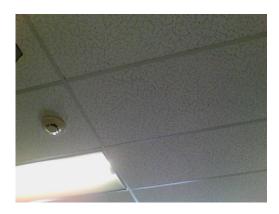
There are many different styles and colors to choose from and only some on tracks to reduce air leakage. The most important criteria is to select a shade with two layers of material creating a 'honeycomb' pocket of air.

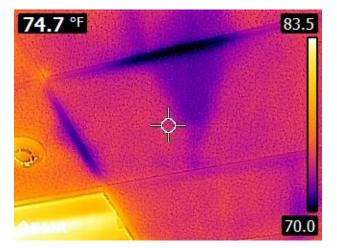
82.1

ESM #7 and #3

64.2 °F

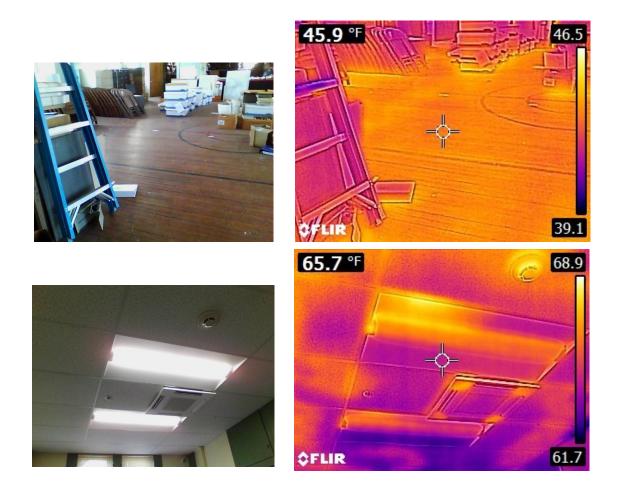

ESM #5

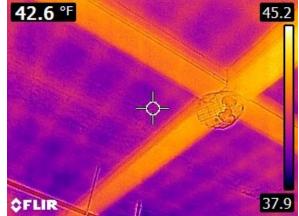

ESM #5 is intended to address the ceiling plane, where it also may provide access to top of walls.


There are fiberglass batts above the suspending ceiling (where it exists) which does offer some level of thermal barrier.

But air can easily migrate through fiberglass and there also appears to be voids above the plaster ceiling of the lounge area.

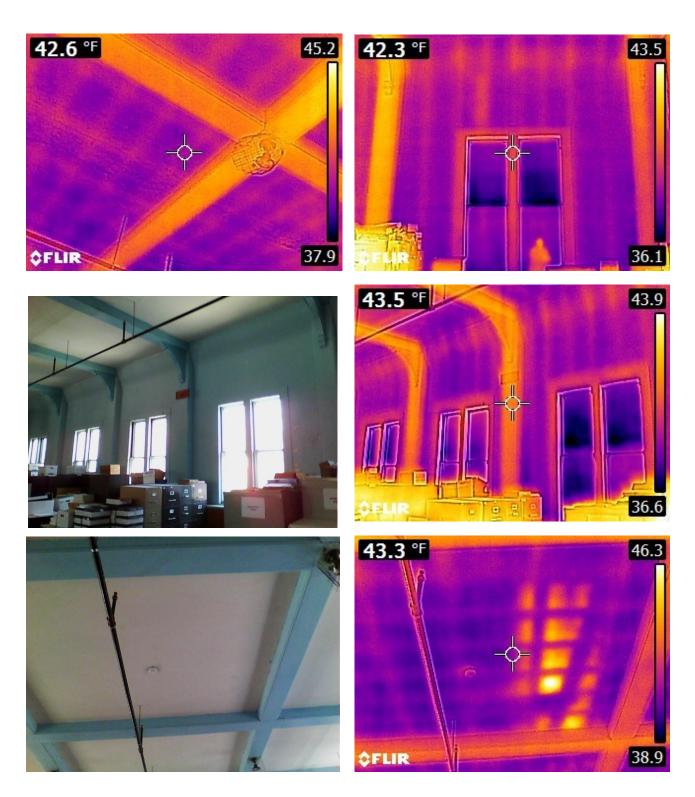
Ideally, the floor of the second floor would be dense packed with cellulose, but access and practicality of that measure needs to be explored by a contractor who would do the work.





ESM #5

There does not appear to be insulation in the walls or above the ceiling of the second floor. As long is it remains un-heated, it is proposed to focus on improving the thermal barrier at the floor and stairwell wall boundary.



Energy Audit

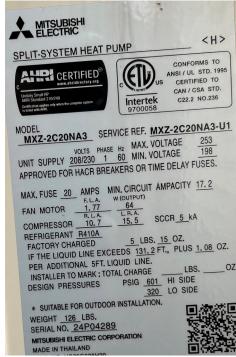
Unconditioned Second Floor Storage

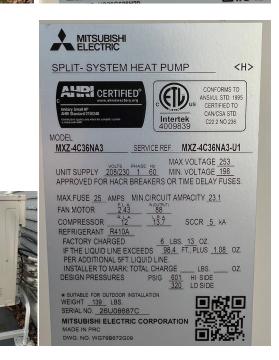
Henniker Town Hall

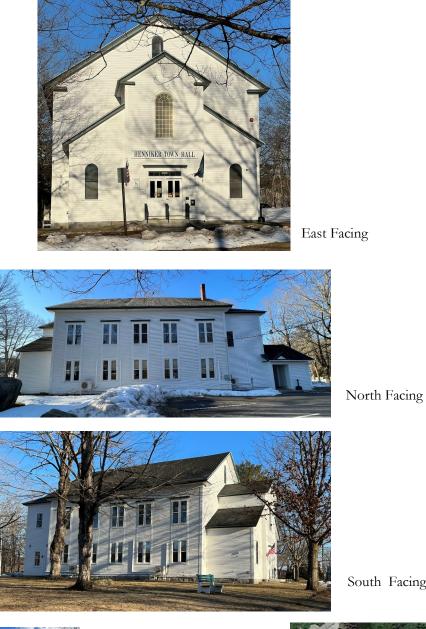
Energy Audit

Heating and Cooling Equipment

Weil-McLain Model # WGO-5 or 5R Output 152 or 128MBH


AFUE 85%


<H> SPLIT- SYSTEM HEAT PUMP CONFORMS TO ANSI/UL STD. 1995 CERTIFIED TO CAN/CSA STD. Intertek 4009839 C22.2 NO 236 MODE SERVICE REF. MXZ-3C24NA3-U1 MXZ-3C24NA3 MAX.VOLTAGE 253 UNIT SUPPLY 208/230 1 60 MIN. VOLTAGE 198 APPROVED FOR HACR BREAKERS OR TIME DELAY FUSES. MAX.FUSE 25 AMPS MIN.CIRCUIT AMPACITY 22.1 (OUTP) 243 FAN MOTOR 13.7 SCCR 5 kA COMPRESSOR REFRIGERANT R410A LBS. 13 OZ. FACTORY CHARGED 6 IF THE LIQUID LINE EXCEEDS 98.4 PER ADDITIONAL 5FT. LIQUID LINE. INSTALLER TO MARK: TOTAL CHARGE 98.4 FT., PLUS 1.08 OZ. LBS. OZ. HI SIDE 601 DESIGN PRESSURES PSIG


State Industries Elec Water Heater (2) 1650watt elements

West Facing

Just Because Its Such A Great Entrance

The Basics of Heat Transfer in a Building

Heat moves in three basic ways in a building: Conduction, convection, and radiation.

Heat **conducts** to coolth or cold in any direction and through physical contact of materials. Insulation can slow the rate of heat loss to the outside. The rate at which it moves is determined by the type and thickness of material and the temperature difference between inside and outside. Compare holding a ceramic mug of hot water vs a glass of hot water, vs a glass of cold water. The skin of your hand will be heated—or cooled—based on the conductivity of the mug, glass, and the temperature difference of the water and your hand.

In a building in our climate, heat moves, or 'is lost' to the outside as it moves from inside heated space to the colder outside through an assembly of materials. For the walls, the assembly may consist of plaster or sheet-rock, brick, or wood framing with insulation in cavities (or not), exterior board sheathing, wood clapboards, or perhaps a thin layer of insulation and vinyl siding. The rate of heat loss varies with the difference between the inside temperature and outside temperature. That is why setting the thermostat back to 55 degrees when the building is unoccupied saves energy; because the rate of heat loss is slowed.

Heat can also be transferred through air or water by **convection**. While heat moves to cold via conduction, warmer air rises because it is lighter, or less dense, than cooler air. This means that insulation can only work well if it doesn't allow air to pass through it. The other way to say it is: Insulation needs to be in contact with an air barrier on all sides to perform as expected. Weatherstripping around doors and windows, for example, can stop cold air infiltration which, when warmed, rises to the ceiling and exfiltrates through any cracks or gaps in the ceiling material.

Insulation is usually described by its R-value, or resistance to allow heat transfer. But R-value doesn't tell the whole story because it only refers to conductive heat loss and doesn't consider convection. Manufactures of insulation test their products in a laboratory by placing it, fully lofted, in a perfectly sealed box, and measure the rate that heat moves from one side to the other to determine what "R-Value" to stamp on the product to be sold. If its not installed in exactly the same way, that R-value has very little meaning.

The third way heat moves is by **radiation**. This happens through space and from a warmer source to cooler surface in visual contact. Think of feeling the warmth of the sun and the immediate difference when a cloud blocks it. The sun still warms the earth surfaces and surrounding air, but direct radiation can be blocked—or shaded. Same thing with a wood stove. A hot stove warms air, but its greatest impact is by radiation which is only felt when one is in visible contact. And the further away, the less heat is felt. Its often tempting to replace windows because we feel so cold when next to them! That's because our body heat radiates to the cold surface. Insulated shades or quilts stops that radiative loss (but also eliminates view and daylight). Interior glazing panels can make a big difference for single pane windows because the air space raises the surface temperature of the inside glass.

In reality, all three mechanisms happen at the same time, though one usually dominates the others in terms of how much heat is moved.

The role of heating equipment is to replace the heat that is lost through the envelope. This is described or measured as replacing BTU per hour (BTU/hr). If the heating system (electric baseboard, oil or propane furnace or boiler, etc...) creates or moves more heat (BTU) in an hour than in lost to the outside, the system is considered "over-sized" which can waste energy unnecessarily. On the other hand, if the system cannot generate or move enough heat to replace what is lost in any given hour, the system is "undersized" and will not be able to maintain warm enough inside temperatures for human comfort. So correct sizing is important!

Hopkinton Town Hall EXISTING HVAC Load Calculations

for

Town Of Henniker

Henniker NH 03242

Prepared By:

Margaret Dillon S.E.E.D.S.

603-532-8979 Thursday, November 9, 2023

Rhvac is an ACCA approved Manual J, D and S computer program. Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

Rhvac - Residential & Light Co S.E.E.D.S. Jaffrey, NH 03452	mmercial HVAC Loads		}			ware Development, Inc. ton Town Hall EXISTING Page 2
Project Report						
General Project Information Project Title: Project Date: Client Name: Client City: Company Name: Company Representative: Company Phone: Company E-Mail Address:	Hopkinton Town Ha Tuesday, October Town Of Henniker Henniker NH 0324 S.E.E.D.S. Margaret Dillon 603-532-8979	17, 2023				
Design Data Reference City:		Concord AF				
Building Orientation: Daily Temperature Range: Latitude: Elevation: Altitude Factor:		Front door f High 3 Degrees 2 ft.	aces Nort	h		
	door Outdoor	Outdoor	Indoor <u>Rel.Hum</u> n/a	Indoor <u>Dry Bulb</u> 70	Grains Difference	
Summer:	-2 -2.6 87 70	43%	50%	70	n/a 19	
Check Figures						
Total Building Supply CFM: Square ft. of Room Area: Volume (ft ³):	2	789 802 910		er Square ft ft. Per Ton:		0.638 722
Building Loads		00.400		00.400		
Total Heating Required Inclu Total Sensible Gain: Total Latent Gain: Total Cooling Required Inclu		92,438 38,872 7,696 46,568	Btuh Btuh	92.438 83 17 3.88	% %	Sensible + Latent)
Notes Rhvac is an ACCA approved Calculations are performed All computed results are est Be sure to select a unit that your design conditions.	per ACCA Manual J 8 imates as building us	th Edition, Ver and weather	sion 2, an may vary.			ormance data at

Rhvac - Residential & Light Commercial HVAC Loads S.E.E.D.S. Jaffrey, NH 03452

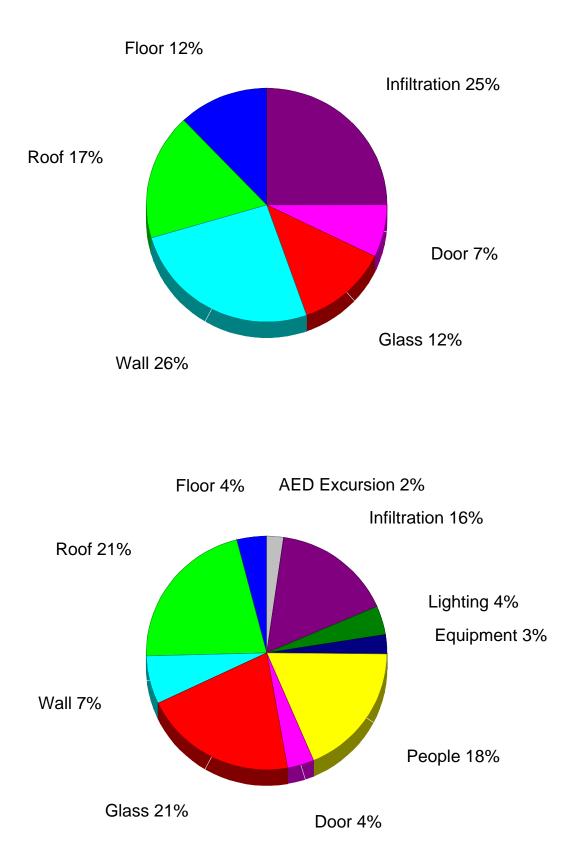
Miscellaneous Report

System 1 Oil Boiler. ASHP	Suppleme	nt	Outo	loor	Outdoor	Outdoor	Indoor	Indoor	Grains
Input Data			Dry E	Bulb	Wet Bulb	Rel.Hum	Rel.Hum	Dry Bulb	Difference
Winter:				-2	-2.6	80%	n/a	70	n/a
Summer:				87	70	43%	50%	75	18.65
Duct Sizing Inputs									
1	<u>Main Trunk</u>			R	<u>unouts</u>				
Calculate:	No				No				
Use Schedule:	No				Yes				
Roughness Factor:	0.00300			-	.01000				
Pressure Drop:	0.1000	in.wg./10)0 ft.	(0.1000 in.w	vg./100 ft.			
Minimum Velocity:	-	ft./min			0 ft./n				
Maximum Velocity:	900	ft./min			750 ft./n	nin			
Minimum Height:	0	in.			0 in.				
Maximum Height:	0	in.			0 in.				
Outside Air Data									
		Winter			<u>Summe</u>				
Infiltration Specified:			AC/hr			2 AC/hr			
		295	CFM		295	5 CFM			
Infiltration Actual:		0.592	AC/hr		0.592	2 AC/hr			
Above Grade Volume:	X	29,910	Cu.ft.		<u>X 29,910</u>	<u>)</u> Cu.ft.			
		17,700	Cu.ft./hr		17,700) Cu.ft./hr			
	Σ	(0.0167			X 0.0167	7			
Total Building Infiltration:		295	CFM		295	5 CFM			
Total Building Ventilation:		0	CFM		(CFM			
-									
System 1									
Infiltration & Ventilation Se			13.04				Summer Tem		ce)
Infiltration & Ventilation La			12.52		`		Grains Differe	,	
Infiltration & Ventilation Se				3 =	(1.10 X 0.98	88 X 72.00	Winter Temp.	Difference)
Winter Infiltration Specified		2 AC/hr (2	,						
Summer Infiltration Specifi	ed: 0.592	2 AC/hr (2	95 CFM)						

Load Preview Report

Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss	Sys Htg CFM	Sys Clg CFM	Sys Act CFM	Duo Siz
Building	3.88	722	2,802	38,872	7,696	46,568	92,438	1,215	1,789	1,789	
System 1	3.88	722	2,802	38,872	7,696	46,568	92,438	1,215	1,789	1,789	0
Zone 1			2,802	38,872	7,696	46,568	92,438	1,215 <mark>-</mark>	1,789	1,789	
1-Main Entrance			420	9,026	1,721	10,747	36,381	478	415	415	4(
2-Lobby			420	2,195	150	2,345	5,210	69	101	101	1(
3-Town Clerk.Tax Collector			294	3,856	625	4,481	6,043	79	177	177	2(
4-Assessing Office			252	2,425	393	2,818	4,817	63	112	112	2(
5-Finance			162	3,399	750	4,149	7,803	103	156	156	2(
6-Sm RR			40	1,127	43	1,170	1,499	20	52	52	1(
7-Lg RR			80	1,868	86	1,954	3,497	46	86	86	10
8-Staff Lounge And Kitchen			192	4,419	738	5,157	10,247	135	203	203	20
9-Town Administrator			162	1,749	329	2,078	3,338	44	81	81	1(
10-Meeting Room			540	6,479	2,289	8,768	9,150	120	298	298	30
11-Planning & Selectmen			240	2,328	572	2,900	4,453	59	107	107	1(

Total Building Summary Loads


Component		Area	Sen	Lat	Sen	Tota
Description		Quan	Loss	Gain	Gain	Gair
A-cm-o: Glazing-Single pane, operable window, clear, metal frame no break, U-value 1.27, SHGC 0.75		27.7	2,534	0	1,346	1,346
Replacement: Glazing-DP Pane with Low E, high SHGC, U-value 0.38, SHGC 0.49		326.2	8,920	0	8,290	8,290
Door: Door-Glass Entry Door, U-value 0.87		57.1	3,579	0	894	894
1D: Door-Wood - Solid Core, U-value 0.87		39.4	2,471	0	618	618
1L: Door-Metal - Paper Honeycomb Core, U-value 0.56		16.2	655	0	164	164
listoric Frame: Wall-Frame, Custom, Town Hall partially insulated frame walls, U-value 0.125	2	2089.8	18,809	0	2,454	2,454
2A-0bw: Wall-Frame, no insulation in stud cavity, no board insulation, brick finish, wood studs, U-value 0.353		200.6	5,097	0	665	665
Slopes.Poor: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, Slopes Fiberglass, U-value 0.1		280	2,016	0	1,736	1,736
G Batts-ml: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, FG batts over suspended ceiling, light metal, U-value 0.067		2110	10,178	0	5,938	5,938
oids-ml: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Custom, minimal material over old plaster ceiling, light metal, U-value 0.2		272	3,917	0	2,285	2,285
9B-0sp: Floor-Over enclosed crawl space, R-4 insulation on exposed walls, sealed crawl space, passive, no floor insulation, carpet or hardwood, U- value 0.368		2328	5,461	0	910	910
Poor fg: Floor-Over enclosed crawl space, Custom, 19A fiberglass in poor condition, U-value 0.5		474	5,725	0	955	955
Subtotals for structure:			69,362	0	26,255	26,255
People:		20	,	4,000	4,600	8,600
Equipment:				0	1,250	1,25
Lighting:		545			1,858	1,858
Ductwork:			0	0	0	
Infiltration: Winter CFM: 295, Summer CFM: 295			23,076	3,696	3,846	7,54
Ventilation: Winter CFM: 0, Summer CFM: 0			0	0	0	
AED Excursion:			0	0	1,062	1,062
Total Building Load Totals:			92,438	7,696	38,872	46,568
Check Figures			Dan 0a	-		0.000
Total Building Supply CFM:1,789Square ft. of Room Area:2,802Volume (ft³):29,910			Per Square ft are ft. Per Ton:			0.638 722
Building Loads						
Total Heating Required Including Ventilation Air:	92,438 38,872		92.438 83	MBH %		
Total Latent Gain:	7,696	Btuh	17	%	d On Sensible	+ Latent)
	-0,000	Blun	5.00	i una (Dase		

Rhvac is an ACCA approved Manual J, D and S computer program.

Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

All computed results are estimates as building use and weather may vary.

Be sure to select a unit that meets both sensible and latent loads according to the manufacturer's performance data at your design conditions.

Hopkinton Town Hall IMPROVED With DP Walls HVAC Load Calculations

for

Town Of Henniker

Henniker NH 03242

Prepared By:

Margaret Dillon S.E.E.D.S.

603-532-8979 Thursday, November 9, 2023

Rhvac is an ACCA approved Manual J, D and S computer program. Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

Rhvac - Residential & Light Commercial HVAC Loads
S.E.E.D.S.
Jaffrey, NH 03452

Elite Software Development, Inc. Hopkinton Town Hall IMPROVED With DP Walls Page 2

Project Report

General Project Inform	nation									
Project Title:		kinton Town	Hall IMPROV	ED With DP	Walls					
Project Date:										
Client Name: Town Of Henniker										
Client City: Henniker NH 03242										
Company Name: S.E.E.D.S.										
Company Representa		rgaret Dillon								
Company Phone:		8-532-8979								
Company E-Mail Add	less.									
Design Data										
Reference City:				AP, New Ha						
Building Orientation:				or faces Nort	th					
Daily Temperature Ra	ange:		High							
Latitude:			43 Degrees							
Elevation:			342 ft.							
Altitude Factor:		0.8	988							
	Outdoor	Outdoor	Outdoor	Indoor	Indoor	Grains				
	<u>Dry Bulb</u>	Wet Bulb	<u>Rel.Hum</u>	<u>Rel.Hum</u>	<u>Dry Bulb</u>	<u>Difference</u>				
Winter:	-2	-2.6	n/a	n/a	70	n/a				
Summer:	87	70	43%	50%	75	19				
Check Figures										
Total Building Supply	CFM:		1,507	CFM P	er Square ft	.:	0.538			
Square ft. of Room Ar	ea:		2,802	Square	e ft. Per Ton:	:	873			
Volume (ft ³):		2	29,910							
Building Loads										
Total Heating Require	d Including	Ventilation Air		63 Btuh	60.063					
Total Sensible Gain:			,	56 Btuh	85					
Total Latent Gain:	مالية مانية مانية مرا		,	53 Btuh	15					
Total Cooling Require	a incluaing	ventilation Alf	. 38,5	09 Btuh	3.21	TONS (Based ON	Sensible + Latent)			
Notes										
Rhvac is an ACCA ap	proved Man	ual J, D and S	S computer pro	ogram.						
Calculations are perfo										

Þ

Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

All computed results are estimates as building use and weather may vary.

Be sure to select a unit that meets both sensible and latent loads according to the manufacturer's performance data at your design conditions.

Rhvac - Residential & Light Commercial HVAC Loads S.E.E.D.S. Jaffrey, NH 03452

Miscellaneous Report

Wildoonanoodo rito	0011								
System 1 Oil Boiler. ASHP	Supplement	nt	Outo	door	Outdoor	Outdoor	Indoor	Indoor	Grains
Input Data			Dry I	Bulb	Wet Bulb	Rel.Hum	Rel.Hum	Dry Bulb	Difference
Winter:				-2	-2.6	80%	n/a	70	n/a
Summer:				87	70	43%	50%	75	18.65
Duct Sizing Inputs									
Δ	<u> Main Trunk</u>			Rı	<u>unouts</u>				
Calculate:	No				No				
Use Schedule:	No				Yes				
Roughness Factor:	0.00300				.01000				
Pressure Drop:		in.wg./10	00 ft.	(0.1000 in.w				
Minimum Velocity:		ft./min			0 ft./n				
Maximum Velocity:	900	ft./min			750 ft./n	nin			
Minimum Height:	0	in.			0 in.				
Maximum Height:	0	in.			0 in.				
Outside Air Data									
		<u>Winter</u>			Summe				
Infiltration Specified:			AC/hr			AC/hr			
			CFM) CFM			
Infiltration Actual:			AC/hr			AC/hr			
Above Grade Volume:	<u>X</u>	<u>29,910</u>			<u>X 29,910</u>				
		,	Cu.ft./hr		,) Cu.ft./hr			
	Z	(0.0167	0514		<u>X 0.0167</u>				
Total Building Infiltration:			CFM		-) CFM			
Total Building Ventilation:		0	CFM		Ĺ) CFM			
System 1									
Infiltration & Ventilation Se	nsihla Gain	Multiplio	r: 13.0-	1 _	(1 10 X 0 0	R8 X 12 00	Summer Tem		
Infiltration & Ventilation Lat			. 13.0				Grains Differe		
Infiltration & Ventilation Se		•					Winter Temp.)
Winter Infiltration Specified		1 AC/hr (1		5 -	(1.10 X 0.90	50 / 12.00	winter remp.	Difference)
Summer Infiltration Specific		1 AC/hr (1							
Curriner minitation Opecini	50. 0.20								

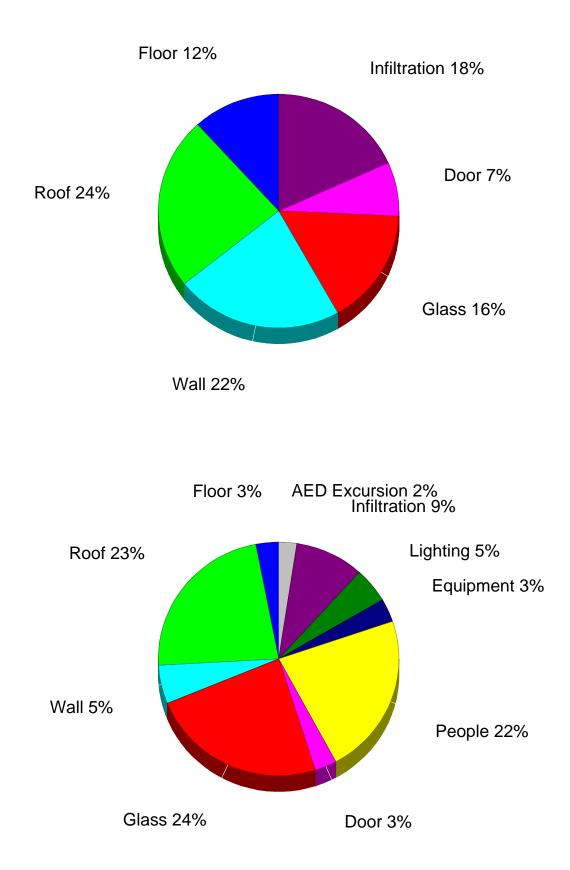
Load Preview Report

Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss	Sys Htg CFM	Sys Clg CFM	Sys Act CFM	Du Siz
Building	3.21	873	2,802	32,756	5,753	38,509	60,063	790	1,507	1,507	
System 1	3.21	873	2,802	32,756	5,753	38,509	60,063	790	1,507	1,507	(
Zone 1			2,802	32,756	5,753	38,509	60,063	790	1,507	1,507	
1-Main Entrance			420	5,450	817	6,267	19,017	250	251	251	3
2-Lobby			420	2,092	71	2,163	4,421	58	96	96	1
3-Town Clerk.Tax Collector			294	3,709	507	4,216	4,964	65	171	171	2
4-Assessing Office			252	2,292	292	2,584	3,832	50	105	105	1
5-Finance			162	2,933	566	3,499	4,657	61	135	135	2
6-Sm RR			40	1,045	20	1,065	985	13	48	48	1
7-Lg RR			80	1,203	41	1,244	1,492	20	55	55	1
8-Staff Lounge And Kitchen			192	3,863	560	4,423	6,603	87	178	178	2
9-Town Administrator			162	1,664	261	1,925	2,708	36	77	77	1
10-Meeting Room			540	6,294	2,137	8,431	7,798	103	290	290	3
11-Planning & Selectmen			240	2,212	481	2,693	3,586	47	102	102	1

Total Building Summary Loads

Total Building Summary Loads						
Component		Area	Sen	Lat	Sen	Total
Description		Quan	Loss	Gain	Gain	Gain
SP with Int: Glazing-Historic single pane with interior panels, U-value 0.38, SHGC 0.6		27.7	758	0	866	866
Replacement: Glazing-DP Pane with Low E, high SHGC, U-value 0.38, SHGC 0.49	1	326.2	8,920	0	8,290	8,290
Door: Door-Glass Entry Door, U-value 0.87		57.1	3,579	0	894	894
Wood with Foam: Door-Foam insert over double wood		39.4	256	0	64	64
doors, U-value 0.09				Ū		
11L: Door-Metal - Paper Honeycomb Core, U-value 0.56		16.2	655	0	164	164
DP cellulose 4": Wall-Frame, Custom, Dense Pack Cellulose, U-value 0.083	4	2089.8	12,488	0	1,995	1,995
12D-0bw: Wall-Frame, R-15 insulation in 2 x 4 stud		200.6	1,025	0	57	57
cavity, no board insulation, brick finish, wood studs,			,	-	-	-
U-value 0.071	•	200	1 010	0	1 0 4 0	1 0 4 0
12D-0bw: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition	C	280	1,210	0	1,042	1,042
Ceilings), , Slopes Fiberglass, U-value 0.06						
FG Batts-ml: Roof/Ceiling-Under Attic with Insulation on		2110	10,178	0	5,938	5,938
Attic Floor (also use for Knee Walls and Partition		2110	10,170	0	5,550	5,550
Ceilings), Custom, FG batts over suspended ceiling,						
light metal, U-value 0.067						
Blow in Cellulose: Roof/Ceiling-Under Attic with Insulation	n	80	219	0	188	188
on Attic Floor (also use for Knee Walls and Partition		00	2.0	0	100	100
Ceilings), Custom, Blow in 10" Cellulose over						
questionable fiberglass batts, U-value 0.038						
voids-ml: Roof/Ceiling-Under Attic with Insulation on Attic	;	192	2,765	0	1,613	1,613
Floor (also use for Knee Walls and Partition			_,	C	.,	.,
Ceilings), Custom, minimal material over old plaster						
ceiling, light metal, U-value 0.2						
19B-0sp: Floor-Over enclosed crawl space, R-4		2520	5,911	0	985	985
insulation on exposed walls, sealed crawl space,						
passive, no floor insulation, carpet or hardwood, U-						
value 0.368						
Thermax on Walls: Floor-Over enclosed crawl space,		282	1,149	0	191	191
Custom, R12 Thermax on walls.SPF perimeter, U-						
value 0.083						
Subtotals for structure:			49,113	0	22,287	22,287
People:		20	-, -	4,000	4,600	8,600
Equipment:				0	1,250	1,250
Lighting:		545			1,858	1,858
Ductwork:			0	0	0	0
Infiltration: Winter CFM: 140, Summer CFM: 140			10,950	1,753	1,825	3,578
Ventilation: Winter CFM: 0, Summer CFM: 0			0	0	0	0
AED Excursion:			0	0	936	936
Total Building Load Totals:			60,063	5,753	32,756	38,509
Check Figures						
Total Building Supply CFM: 1,507		CFM	Per Square ft	.:		0.538
Square ft. of Room Area: 2,802		Squar	re ft. Per Ton:			873
Volume (ft ³): 29,910		-				
Building Loads						
Total Heating Required Including Ventilation Air:	60,063	Btuh	60.063	MBH		
Total Sensible Gain:	32,756	Btuh		%		
Total Latent Gain:	5,753	Btuh	15	%		
Total Cooling Required Including Ventilation Air:	38,509	Btuh	3.21	Tons (Based	d On Sensible	+ Latent)
Notes						
Rhvac is an ACCA approved Manual J, D and S comput	er progra	am.				
	1 - 3.					

C:\ ...\Town Hall Improved & Walls.rh9


Total Building Summary Loads (cont'd)

Notes

Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

All computed results are estimates as building use and weather may vary.

Be sure to select a unit that meets both sensible and latent loads according to the manufacturer's performance data at your design conditions.

Henniker Town Hall Oil as Primary Energy Cost Analysis

for

Town Of Henniker

Henniker NH 03242

Prepared By:

Margaret Dillon S.E.E.D.S.

603-532-8979 Wednesday, November 15, 2023

Energy Audit - Energy Au S.E.E.D.S. Jaffrey, NH 03452	nalysis and Cost Comparison	<u>}</u>	Elite Software Development, Inc. Henniker Town Hall Oil as Primary Page 2
Project Information			raye z
Project Title: Designed By: Project Date: Project Comment:	Henniker Town Hall Oil as Primary Thursday, November 2, 2023	Company Name: Company Rep.: Company Address: Company City:	S.E.E.D.S. Margaret Dillon
Client Name: Client Address: Client City: Client Phone: Client Fax: Client Comment:	Town Of Henniker Henniker NH 03242	Company City. Company Phone: Company Fax: Company Comment:	603-532-8979
Cooling Equipment	System 1		
Model Type: Model Number: Capacity:	Standard Air Conditioner 60,000 Btuh		
Efficiency:	10 SEER		
Heating Equipment	System 1		
Model Type: Model Number:	Fuel Oil Boiler		
Capacity: Efficiency:	154,000 Btuh 85 AFUE		
System Description:	Existing Oil As Primary		
Cooling Equipment	System 2		
Model Type: Model Number:	Standard Air Conditioner		
Capacity: Efficiency:	60,000 Btuh 10 SEER		
Heating Equipment	System 2		
Model Type: Model Number: Capacity:	Fuel Oil Boiler 154,000 Btuh		
Efficiency: System Description:	85 AFUE Existing Oil As Primary		
System Description.	Existing Oil As Flinary		
Cooling Equipment	System 3		
Model Type: Model Number:	Standard Air Conditioner		
Capacity: Efficiency:	60,000 Btuh 10 SEER		
Heating Equipment	System 3		
Model Type: Model Number:	Fuel Oil Boiler		
Capacity: Efficiency:	154,000 Btuh 85 AFUE		
System Description:	Existing Oil As Primary		

Project Summary

1		Info	Ducient		0
i	rma	Info	Project	onoral	Ge

General Project Inform	lation		
Project Title: Project Date: Client Name: Client City:	Henniker Town Hall Oil as Primary Thursday, November 2, 2023 Town Of Henniker Henniker NH 03242	Company Name: Company Rep: Company Phone: Company E-Mail Address:	S.E.E.D.S. Margaret Dillon 603-532-8979
Design Data			
Building Area: People: Occupancy:	2,802 sq.ft. 20 8	Cooling Load: Heating Load: Loads Adj. Factor: AC On Temp.:	54,095 Btuh 95,428 Btuh 0.71 75 °F
Actual City: Weather Ref. City:	Concord AP, New Hampshire Concord, New Hampshire		
Summer Outdoor: Summer Indoor: Cooling Hours:	87 °F 75 °F 775	Winter Outdoor: Winter Indoor: Degree Days:	-3 °F 70 °F 7,471

Annual Operating Cost Estimate

	Fuel	Total	Total	Annual	Total	Average
System	Rates	Heating	Cooling	Service	Oper.	Monthly
Description	Set	Cost	Cost	Charges	Cost	Cost
Existing Oil As Primary	1	\$6,517	\$434	\$0	\$6,951	\$579
Existing Oil As Primary	1	\$5,808	\$434	\$0	\$6,243	\$520
Existing Oil As Primary	1	\$5,080	\$434	\$0	\$5,515	\$460

Monthly Costs - System 1 - Existing Oil As Primary

Monthly System Cost							
	Cooling		Heating		Total		
Month	Cost	%	Cost	%	Cost		
January	\$0.00	0.0%	\$1,059.05	100.0%	\$1,059.05		
February	\$0.00	0.0%	\$897.66	100.0%	\$897.66		
March	\$0.00	0.0%	\$835.12	100.0%	\$835.12		
April	\$3.79	0.7%	\$540.84	99.3%	\$544.63		
May	\$40.31	11.0%	\$325.49	89.0%	\$365.80		
June	\$97.73	37.4%	\$163.54	62.6%	\$261.27		
July	\$142.42	62.6%	\$85.20	37.4%	\$227.62		
August	\$108.45	41.9%	\$150.48	58.1%	\$258.93		
September	\$35.47	11.1%	\$283.63	88.9%	\$319.10		
October	\$6.21	1.3%	\$483.04	98.7%	\$489.25		
November	\$0.00	0.0%	\$679.19	100.0%	\$679.19		
December	\$0.00	0.0%	\$1,013.28	100.0%	\$1,013.28		
Total	\$434.39	6.2%	\$6,516.51	93.8%	\$6,950.90		

Monthly Fuel Usage and Cost								
	Elect	ricity	Natura	al Gas	Propane		Fuel Oil	
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons
January	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	\$1,059.05	334.1
February	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	\$897.66	283.2
March	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	\$835.12	263.4
April	\$3.79	29.2	\$0.00	0.0	\$0.00	0.0	\$540.84	170.6
May	\$40.31	310.1	\$0.00	0.0	\$0.00	0.0	\$325.49	102.7
June	\$97.73	751.8	\$0.00	0.0	\$0.00	0.0	\$163.54	51.6
July	\$142.42	1,095.5	\$0.00	0.0	\$0.00	0.0	\$85.20	26.9
August	\$108.45	834.2	\$0.00	0.0	\$0.00	0.0	\$150.48	47.5
September	\$35.47	272.9	\$0.00	0.0	\$0.00	0.0	\$283.63	89.5
October	\$6.21	47.8	\$0.00	0.0	\$0.00	0.0	\$483.04	152.4
November	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	\$679.19	214.3
December	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	\$1,013.28	319.6
Total	\$434.39	3,341.5	\$0.00	0.0	\$0.00	0.0	\$6,516.51	2,055.7

Average Electric Cost Per kWh:	\$0.130/kWh
Average Fuel Oil Cost Per Gallon:	\$3.170/Gallon
Total annual cooling load energy:	27,517,924 BTU
Total annual heating load energy:	268,461,408 BTU

Monthly Costs - System 2 - Existing Oil As Primary

Monthly System Cost							
	Cooling		Heating		Total		
Month	Cost	%	Cost	%	Cost		
January	\$0.00	0.0%	\$922.42	100.0%	\$922.42		
February	\$0.00	0.0%	\$784.23	100.0%	\$784.23		
March	\$0.00	0.0%	\$734.23	100.0%	\$734.23		
April	\$3.79	0.8%	\$487.88	99.2%	\$491.68		
May	\$40.31	11.8%	\$301.93	88.2%	\$342.24		
June	\$97.73	38.6%	\$155.62	61.4%	\$253.35		
July	\$142.42	63.3%	\$82.74	36.7%	\$225.16		
August	\$108.45	43.0%	\$143.70	57.0%	\$252.15		
September	\$35.47	11.7%	\$266.70	88.3%	\$302.17		
October	\$6.21	1.4%	\$440.63	98.6%	\$446.84		
November	\$0.00	0.0%	\$603.92	100.0%	\$603.92		
December	\$0.00	0.0%	\$884.33	100.0%	\$884.33		
Total	\$434.39	7.0%	\$5,808.31	93.0%	\$6,242.71		

Monthly Fuel Usage and Cost								
	Elect	ricity	Natura	al Gas	Propane		Fuel Oil	
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons
January	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	\$922.42	291.0
February	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	\$784.23	247.4
March	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	\$734.23	231.6
April	\$3.79	29.2	\$0.00	0.0	\$0.00	0.0	\$487.88	153.9
May	\$40.31	310.1	\$0.00	0.0	\$0.00	0.0	\$301.93	95.2
June	\$97.73	751.8	\$0.00	0.0	\$0.00	0.0	\$155.62	49.1
July	\$142.42	1,095.5	\$0.00	0.0	\$0.00	0.0	\$82.74	26.1
August	\$108.45	834.2	\$0.00	0.0	\$0.00	0.0	\$143.69	45.3
September	\$35.47	272.9	\$0.00	0.0	\$0.00	0.0	\$266.70	84.1
October	\$6.21	47.8	\$0.00	0.0	\$0.00	0.0	\$440.63	139.0
November	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	\$603.92	190.5
December	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	\$884.33	279.0
Total	\$434.39	3,341.5	\$0.00	0.0	\$0.00	0.0	\$5,808.31	1,832.3

Average Electric Cost Per kWh:	\$0.130/kWh
Average Fuel Oil Cost Per Gallon:	\$3.170/Gallon
Total annual cooling load energy:	27,517,924 BTU
Total annual heating load energy:	209,530,864 BTU

Monthly Costs - System 3 - Existing Oil As Primary

Monthly System Cost							
	Cooling		Heating		Total		
Month	Cost	%	Cost	%	Cost		
January	\$0.00	0.0%	\$791.43	100.0%	\$791.43		
February	\$0.00	0.0%	\$674.71	100.0%	\$674.71		
March	\$0.00	0.0%	\$635.73	100.0%	\$635.73		
April	\$3.79	0.9%	\$431.29	99.1%	\$435.08		
May	\$40.31	12.9%	\$272.25	87.1%	\$312.56		
June	\$97.73	40.6%	\$142.71	59.4%	\$240.44		
July	\$142.42	65.0%	\$76.84	35.0%	\$219.26		
August	\$108.45	45.1%	\$132.05	54.9%	\$240.50		
September	\$35.47	12.8%	\$242.64	87.2%	\$278.11		
October	\$6.21	1.6%	\$392.55	98.4%	\$398.76		
November	\$0.00	0.0%	\$527.87	100.0%	\$527.87		
December	\$0.00	0.0%	\$760.13	100.0%	\$760.13		
Total	\$434.39	7.9%	\$5,080.19	92.1%	\$5,514.58		

Monthly Fuel Usage and Cost								
	Elect	ricity	Natura	al Gas	Propane		Fuel Oil	
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons
January	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	\$791.43	249.7
February	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	\$674.71	212.8
March	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	\$635.73	200.5
April	\$3.79	29.2	\$0.00	0.0	\$0.00	0.0	\$431.29	136.1
May	\$40.31	310.1	\$0.00	0.0	\$0.00	0.0	\$272.25	85.9
June	\$97.73	751.8	\$0.00	0.0	\$0.00	0.0	\$142.71	45.0
July	\$142.42	1,095.5	\$0.00	0.0	\$0.00	0.0	\$76.84	24.2
August	\$108.45	834.2	\$0.00	0.0	\$0.00	0.0	\$132.05	41.7
September	\$35.47	272.9	\$0.00	0.0	\$0.00	0.0	\$242.64	76.5
October	\$6.21	47.8	\$0.00	0.0	\$0.00	0.0	\$392.55	123.8
November	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	\$527.87	166.5
December	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0	\$760.13	239.8
Total	\$434.39	3,341.5	\$0.00	0.0	\$0.00	0.0	\$5,080.19	1,602.6

Average Electric Cost Per kWh:	\$0.130/kWh
Average Fuel Oil Cost Per Gallon:	\$3.170/Gallon
Total annual cooling load energy:	27,517,924 BTU
Total annual heating load energy:	178,036,576 BTU

Henniker Town Hall ASHP AS PRIMARY Energy Cost Analysis

for

Town Of Henniker

Henniker NH 03242

Prepared By:

Margaret Dillon S.E.E.D.S.

603-532-8979 Wednesday, November 15, 2023

leffrey NUL 00450			Elite Software Development, Inc Henniker Town Hall ASHP AS PRIMARY
Jaffrey, NH 03452			Page
Project Information			
Project Title: Designed By:	Henniker Town Hall ASHP AS PRIMARY	Company Name: Company Rep.: Company Address:	S.E.E.D.S. Margaret Dillon
Project Date: Project Comment:	Thursday, November 2, 2023	Company City: Company Phone:	603-532-8979
Client Name: Client Address:	Town Of Henniker	Company Fax: Company Comment:	
Client City: Client Phone: Client Fax: Client Comment:	Henniker NH 03242		
Cooling Equipment	System 1		
Model Type: Model Number:	Air Source Heat Pump		
Capacity: Efficiency:	60,000 Btuh 18 SEER		
Heating Equipment	System 1		
Model Type: Model Number:	Air Source Heat Pump		
Capacity: Efficiency:	98,400 Btuh 11 HSPF		
System Description:	Existing ASHP Primary		
Cooling Equipment	System 2		
Model Type: Model Number:	Air Source Heat Pump		
Capacity: Efficiency:	60,000 Btuh 18 SEER		
Heating Equipment	System 2		
Model Type: Model Number:	Air Source Heat Pump		
Capacity: Efficiency:	98,400 Btuh 11 HSPF		
System Description:	ESM 1-6 ASHP Primary		
Cooling Equipment	System 3		
Model Type: Model Number:	Air Source Heat Pump		
Capacity: Efficiency:	60,000 Btuh 18 SEER		
Heating Equipment	System 3		
Model Type: Model Number:	Air Source Heat Pump		
Capacity: Efficiency:	98,400 Btuh 11 HSPF		
System Description:	ESM 1-7 ASHP Primary		

Project Summary

T Tojeet Guillina								
General Project Inform	General Project Information							
Project Title:	Henniker Town Hall ASHP AS PRIMARY	Company Name: Company Rep:	S.E.E.D.S. Margaret Dillon					
Project Date: Client Name: Client City:	Thursday, November 2, 2023 Town Of Henniker Henniker NH 03242	Company Phone: Company E-Mail Address:	603-532-8979					
Design Data								
Building Area: People: Occupancy:	2,802 sq.ft. 20 8	Cooling Load: Heating Load: Loads Adj. Factor: AC On Temp.:	54,095 Btuh 95,428 Btuh 0.98 75 °F					
Actual City: Weather Ref. City:	Concord AP, New Hampshire Concord, New Hampshire							
Summer Outdoor: Summer Indoor: Cooling Hours:	87 °F 75 °F 775	Winter Outdoor: Winter Indoor: Degree Days:	-3 °F 70 °F 7,471					

Annual Operating Cost Estimate

	Fuel	Total	Total	Annual	Total	Average
System	Rates	Heating	Cooling	Service	Oper.	Monthly
Description	Set	Cost	Cost	Charges	Cost	Cost
Existing ASHP Primary	1	\$3,782	\$186	\$0	\$3,968	\$331
ESM 1-6 ASHP Primary	1	\$2,874	\$186	\$0	\$3,060	\$255
ESM 1-7 ASHP Primary	1	\$2,420	\$186	\$0	\$2,606	\$217

Monthly Costs - System 1 - Existing ASHP Primary

Wohling System Cos					
	Cooling	Heating		Total	
Month	Cost	%	Cost	%	Cost
January	\$0.00	0.0%	\$782.10	100.0%	\$782.10
February	\$0.00	0.0%	\$646.02	100.0%	\$646.02
March	\$0.00	0.0%	\$475.20	100.0%	\$475.20
April	\$1.62	0.7%	\$241.25	99.3%	\$242.87
May	\$17.26	12.2%	\$124.41	87.8%	\$141.67
June	\$41.85	43.5%	\$54.39	56.5%	\$96.24
July	\$60.99	70.7%	\$25.27	29.3%	\$86.26
August	\$46.44	48.5%	\$49.31	51.5%	\$95.76
September	\$15.19	13.0%	\$101.83	87.0%	\$117.02
October	\$2.66	1.3%	\$205.11	98.7%	\$207.77
November	\$0.00	0.0%	\$341.25	100.0%	\$341.25
December	\$0.00	0.0%	\$735.42	100.0%	\$735.42
Total	\$186.02	4.7%	\$3,781.56	95.3%	\$3,967.58

Monthly Fuel Usage and Cost												
	Electr	ricity	Natura	al Gas	Prop	ane	Fuel	Oil				
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons				
January	\$528.64	4,066.5	\$0.00	0.0	\$0.00	0.0	\$253.46	80.0				
February	\$408.61	3,143.2	\$0.00	0.0	\$0.00	0.0	\$237.41	74.9				
March	\$453.80	3,490.8	\$0.00	0.0	\$0.00	0.0	\$21.40	6.8				
April	\$242.87	1,868.3	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
May	\$141.67	1,089.8	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
June	\$96.24	740.3	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
July	\$86.26	663.5	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
August	\$95.76	736.6	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
September	\$117.02	900.2	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
October	\$207.77	1,598.2	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
November	\$337.12	2,593.2	\$0.00	0.0	\$0.00	0.0	\$4.13	1.3				
December	\$472.00	3,630.8	\$0.00	0.0	\$0.00	0.0	\$263.42	83.1				
Total	\$3,187.77	24,521.3	\$0.00	0.0	\$0.00	0.0	\$779.81	246.0				

Average Electric Cost Per kWh:	\$0.130/kWh
Average Fuel Oil Cost Per Gallon:	\$3.170/Gallon
Total annual cooling load energy:	25,757,124 BTU
Total annual heating load energy:	268,461,408 BTU

Monthly Costs - System 2 - ESM 1-6 ASHP Primary

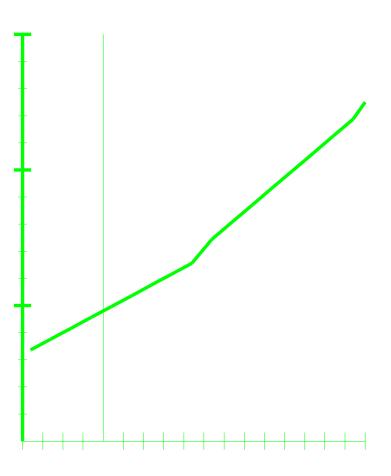
	Cooling		Heating		Total
Month	Cost	%	Cost	%	Cost
January	\$0.00	0.0%	\$581.56	100.0%	\$581.56
February	\$0.00	0.0%	\$487.83	100.0%	\$487.83
March	\$0.00	0.0%	\$359.95	100.0%	\$359.95
April	\$1.62	0.9%	\$188.29	99.1%	\$189.92
May	\$17.26	15.1%	\$97.10	84.9%	\$114.36
June	\$41.85	49.6%	\$42.45	50.4%	\$84.30
July	\$60.99	75.6%	\$19.72	24.4%	\$80.71
August	\$46.44	54.7%	\$38.49	45.3%	\$84.93
September	\$15.19	16.0%	\$79.48	84.0%	\$94.67
October	\$2.66	1.6%	\$160.08	98.4%	\$162.75
November	\$0.00	0.0%	\$263.99	100.0%	\$263.99
December	\$0.00	0.0%	\$555.26	100.0%	\$555.26
Total	\$186.02	6.1%	\$2,874.20	93.9%	\$3,060.23

Monthly Fuel Usage and Cost												
	Electi	ricity	Natura	al Gas	Prop	ane	Fuel Oil					
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons				
January	\$444.80	3,421.5	\$0.00	0.0	\$0.00	0.0	\$136.77	43.1				
February	\$337.23	2,594.0	\$0.00	0.0	\$0.00	0.0	\$150.60	47.5				
March	\$359.68	2,766.7	\$0.00	0.0	\$0.00	0.0	\$0.28	0.1				
April	\$189.92	1,460.9	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
May	\$114.36	879.7	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
June	\$84.30	648.5	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
July	\$80.71	620.9	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
August	\$84.93	653.3	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
September	\$94.67	728.2	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
October	\$162.75	1,251.9	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
November	\$263.99	2,030.7	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
December	\$388.79	2,990.7	\$0.00	0.0	\$0.00	0.0	\$166.46	52.5				
Total	\$2,606.12	20,047.1	\$0.00	0.0	\$0.00	0.0	\$454.11	143.3				

Average Electric Cost Per kWh:	\$0.130/kWh
Average Fuel Oil Cost Per Gallon:	\$3.170/Gallon
Total annual cooling load energy:	25,757,124 BTU
Total annual heating load energy:	209,530,864 BTU

Monthly Costs - System 3 - ESM 1-7 ASHP Primary

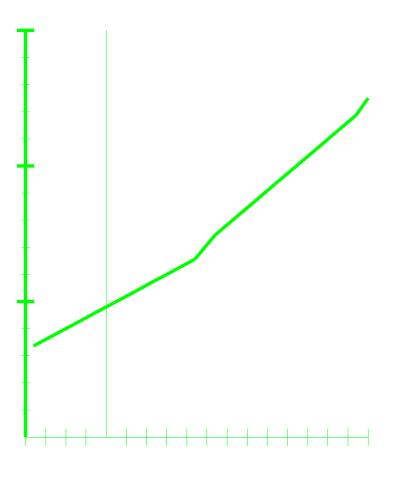
	Cooling		Heating		Total
Month	Cost	%	Cost	%	Cost
January	\$0.00	0.0%	\$484.37	100.0%	\$484.37
February	\$0.00	0.0%	\$408.46	100.0%	\$408.46
March	\$0.00	0.0%	\$305.70	100.0%	\$305.70
April	\$1.62	1.0%	\$159.99	99.0%	\$161.62
May	\$17.26	17.3%	\$82.50	82.7%	\$99.77
June	\$41.85	53.7%	\$36.07	46.3%	\$77.92
July	\$60.99	78.4%	\$16.76	21.6%	\$77.75
August	\$46.44	58.7%	\$32.70	41.3%	\$79.15
September	\$15.19	18.4%	\$67.53	81.6%	\$82.72
October	\$2.66	1.9%	\$136.02	98.1%	\$138.68
November	\$0.00	0.0%	\$224.31	100.0%	\$224.31
December	\$0.00	0.0%	\$465.62	100.0%	\$465.62
Total	\$186.02	7.1%	\$2,420.04	92.9%	\$2,606.07


Monthly Fuel Usage and Cost												
	Elect	ricity	Natura	al Gas	Gas Propar		Fuel	Oil				
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons				
January	\$384.08	2,954.4	\$0.00	0.0	\$0.00	0.0	\$100.29	31.6				
February	\$290.33	2,233.3	\$0.00	0.0	\$0.00	0.0	\$118.14	37.3				
March	\$305.70	2,351.6	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
April	\$161.62	1,243.2	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
May	\$99.77	767.4	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
June	\$77.92	599.4	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
July	\$77.75	598.1	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
August	\$79.15	608.8	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
September	\$82.72	636.3	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
October	\$138.68	1,066.8	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
November	\$224.31	1,725.4	\$0.00	0.0	\$0.00	0.0	\$0.00	0.0				
December	\$334.24	2,571.0	\$0.00	0.0	\$0.00	0.0	\$131.39	41.4				
Total	\$2,256.26	17,355.8	\$0.00	0.0	\$0.00	0.0	\$349.81	110.3				

Average Electric Cost Per kWh:	\$0.130/kWh
Average Fuel Oil Cost Per Gallon:	\$3.170/Gallon
Total annual cooling load energy:	25,757,124 BTU
Total annual heating load energy:	178,036,576 BTU

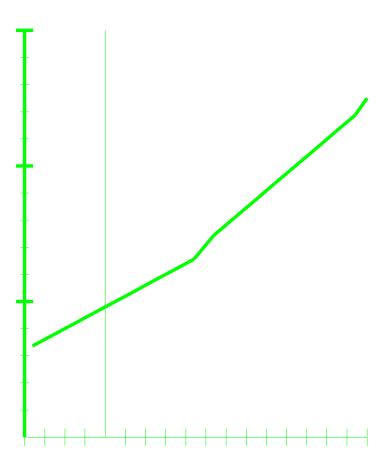
Bin Analysis Report - System 1 - Existing ASHP Primary

Birria	19 010 1	topone o	Jecom	Exioting		mary			
Bin Temp	Hours	Heating	Adjusted	Heat Pump	H. Pump	Backup	H.Pump	Backup	Total
Ranges	Per	Load	Load	Output	Run Time	Output	Heating	Heating	Heating
Degree F	Bin	Btuh	(x 0.98)	Btuh	Fraction	Btuh	Cost	Cost	Cost
-20 to -15	1	109,179	106,996	0	0.000	106,996	0.00	2.88	2.88
-15 to -10	18	102,976	100,916	0	0.000	100,916	0.00	48.91	48.91
-10 to -5	19	96,772	94,837	0	0.000	94,837	0.00	48.52	48.52
-5 to 0	52	90,569	88,758	0	0.000	88,758	0.00	124.28	124.28
0 to 5	136	84,366	82,678	0	0.000	82,678	0.00	302.78	302.78
5 to 10	154	78,162	76,599	54,000	1.000	22,999	142.36	97.01	239.37
10 to 15	209	71,959	70,520	58,000	1.000	12,920	200.75	83.24	283.99
15 to 20	312	65,756	64,440	62,000	1.000	2,840	310.23	67.01	377.24
20 to 25	385	59,552	58,361	58,361	0.878	0	344.84	0.00	344.84
25 to 30	666	53,349	52,282	52,282	0.696	0	463.95	0.00	463.95
30 to 35	878	47,146	46,203	46,203	0.568	0	500.80	0.00	500.80
35 to 40	650	40,942	40,123	40,123	0.457	0	299.93	0.00	299.93
40 to 45	658	34,739	34,044	34,044	0.362	0	241.12	0.00	241.12
45 to 50	679	28,535	27,965	27,965	0.279	0	192.08	0.00	192.08
50 to 55	619	22,332	21,885	21,885	0.205	0	129.26	0.00	129.26
55 to 60	717	16,129	15,806	15,806	0.140	0	102.32	0.00	102.32
60 to 65	685	9,925	9,727	9,727	0.082	0	57.09	0.00	57.09
Totals:	6,838						\$3,001.75	\$779.81	\$3,781.56


Energy Audit - Energy	Analysis and	Cost Comparison
S.E.E.D.S.		

Jaffrey, NH 03452

Bin Analysis Report - System 2 - ESM 1-6 ASHP Primary


Birrina	<i>y</i> old <i>i</i>		Jocom			, initially			
Bin Temp	Hours	Heating	Adjusted	Heat Pump	H. Pump	Backup	H.Pump	Backup	Total
Ranges	Per	Load	Load	Output	Run Time	Output	Heating	Heating	Heating
Degree F	Bin	Btuh	(x 0.98)	Btuh	Fraction	Btuh	Cost	Cost	Cost
-20 to -15	1	85,213	83,509	0	0.000	83,509	0.00	2.25	2.25
-15 to -10	18	80,371	78,764	0	0.000	78,764	0.00	38.18	38.18
-10 to -5	19	75,530	74,019	0	0.000	74,019	0.00	37.87	37.87
-5 to 0	52	70,688	69,274	0	0.000	69,274	0.00	97.00	97.00
0 to 5	136	65,846	64,529	0	0.000	64,529	0.00	236.33	236.33
5 to 10	154	61,005	59,785	54,000	1.000	6,185	142.36	41.41	183.77
10 to 15	209	56,163	55,040	55,040	0.949	0	190.50	0.00	190.50
15 to 20	312	51,321	50,295	50,295	0.811	0	251.67	0.00	251.67
20 to 25	385	46,480	45,550	45,550	0.685	0	269.14	0.00	269.14
25 to 30	666	41,638	40,805	40,805	0.543	0	362.11	0.00	362.11
30 to 35	878	36,797	36,061	36,061	0.443	0	390.87	0.00	390.87
35 to 40	650	31,955	31,316	31,316	0.357	0	234.10	0.00	234.10
40 to 45	658	27,113	26,571	26,571	0.283	0	188.19	0.00	188.19
45 to 50	679	22,272	21,826	21,826	0.217	0	149.92	0.00	149.92
50 to 55	619	17,430	17,081	17,081	0.160	0	100.89	0.00	100.89
55 to 60	717	12,588	12,337	12,337	0.109	0	79.86	0.00	79.86
60 to 65	685	7,747	7,592	7,592	0.064	0	44.56	0.00	44.56
Totals:	6,838						\$2,420.10	\$454.11	\$2,874.20

Bin Analysis Report - System 3 - ESM 1-7 ASHP Primary

Dirivina	<i>y</i> olo i	topon o	your o	201111	/ 10/ 11 /				
Bin Temp	Hours	Heating	Adjusted	Heat Pump	H. Pump	Backup	H.Pump	Backup	Total
Ranges	Per	Load	Load	Output	Run Time	Output	Heating	Heating	Heating
Degree F	Bin	Btuh	(x 0.98)	Btuh	Fraction	Btuh	Cost	Cost	Cost
-20 to -15	1	72,405	70,957	0	0.000	70,957	0.00	1.91	1.91
-15 to -10	18	68,291	66,925	0	0.000	66,925	0.00	32.44	32.44
-10 to -5	19	64,177	62,893	0	0.000	62,893	0.00	32.18	32.18
-5 to 0	52	60,063	58,862	0	0.000	58,862	0.00	82.43	82.43
0 to 5	136	55,949	54,830	0	0.000	54,830	0.00	200.85	200.85
5 to 10	154	51,835	50,798	50,798	0.941	0	133.92	0.00	133.92
10 to 15	209	47,721	46,767	46,767	0.806	0	161.87	0.00	161.87
15 to 20	312	43,607	42,735	42,735	0.689	0	213.84	0.00	213.84
20 to 25	385	39,493	38,704	38,704	0.582	0	228.69	0.00	228.69
25 to 30	666	35,380	34,672	34,672	0.462	0	307.68	0.00	307.68
30 to 35	878	31,266	30,640	30,640	0.376	0	332.12	0.00	332.12
35 to 40	650	27,152	26,609	26,609	0.303	0	198.91	0.00	198.91
40 to 45	658	23,038	22,577	22,577	0.240	0	159.90	0.00	159.90
45 to 50	679	18,924	18,545	18,545	0.185	0	127.38	0.00	127.38
50 to 55	619	14,810	14,514	14,514	0.136	0	85.72	0.00	85.72
55 to 60	717	10,696	10,482	10,482	0.093	0	67.86	0.00	67.86
60 to 65	685	6,582	6,451	6,451	0.054	0	37.86	0.00	37.86
Totals:	6,838						\$2,070.24	\$349.81	\$2,420.04

SPECIFICATIONS: MXZ-4C36NA3

	Maximum Capacity	BTU/H	36,400 // 36,400 // 36,400
	Rated Capacity	BTU/H	35,400 // 34,900 // 34,400
ooling ¹ (Non-Ducted // Mix // Ducted)	Minimum Capacity	BTU/H	11,700 // 11,500 // 11,300
coming (Non Duolea // Mix // Duolea)	Maximum Power Input W		3,960 // 3,960 // 3,960
	Rated Power Input	W	3,760 // 3,850 // 3,940
	Power Factor (208V, 230V)	%	99.0, 99.0 // 99.0, 99.0 // 99.0, 99.0
	Maximum Capacity	BTU/H	43,000 // 43,000 // 43,000
	Rated Capacity	BTU/H	36,000 // 35,200 // 34,400
eating at 47°F ² (Non-Ducted // Mix //	Minimum Capacity	BTU/H	18,300 // 18,800 // 19,300
ucted)	Maximum Power Input	W	4,020 // 4,020 // 4,020
	Rated Power Input	W	3,020 // 3,060 // 3,100
	Power Factor (208V, 230V)	%	98.7, 98.7 // 98.8, 98.8 // 98.8, 98.8
	Maximum Capacity	BTU/H	26,600 // 26,600 // 26,600
eating at 17°F3 (Non-Ducted // Mix //	Rated Capacity	BTU/H	22,400 // 22,400 // 22,400
ucted)	Maximum Power Input	W	3,440 // 3,490 // 3,540
	Rated Power Input	W	2,300 // 2,470 // 2,640
eating at 5°F ⁴ (Non-Ducted // Mix //	Maximum Capacity	BTU/H	24,000 // 24,000 // 24,000
ucted)	Maximum Power Input	W	3,320 // 3,280 // 3,240
	SEER SEER2		19.2 // 17.6 // 16.0 19.20 // 17.60 // 16.00
	EER ¹ EER ²		9.41 // 9.07 // 8.73 9.40 // 9.05 // 8.70
	HSPF (IV) HSPF2 (IV)		11.0 // 10.4 // 9.8 9.8 // 9.65 // 9.5
fficiency (Non-Ducted // Mix // Ducted)	COP at 47°F ²		3.5 // 3.37 // 3.25
	COP at 17°F at Maximum Capacity ³		2.27 // 2.24 // 2.2
	COP at 5°F at Maximum Capacity ⁴		2.12 // 2.14 // 2.17
	ENERGY STAR® Certified		No // No // No
	Electrical Power Requirements	Voltage, Phase, Frequency	208/230, 1, 60
	Guaranteed Voltage Range	V AC	187-253
	Voltage: Indoor - Outdoor, S1-S2	V AC	208/230
	Voltage: Indoor - Outdoor, S2-S3	V DC	24
lectrical	Short-circuit Current Rating (SCCR)	kA	5
	Recommended Fuse/Breaker Size	A	25
	Recommended Wire Size	AWG	14
	Minimum Circuit Ampacity	A	23.1
	Maximum Overcurrent Protection	A	25
	Fan Motor Full Load Amperage	A	2.43
	Airflow Rate (Cooling / Heating)	CFM	2,287 / 2,382
	Refrigerant Control	LEV	
	Defrost Method	Reverse Cycle	
	Heat Exchanger Type	Plate fin coil	
	Sound Pressure Level, Cooling ¹	dB(A)	54
	Sound Pressure Level, Heating ²	dB(A)	56
	Compressor Type		DC INVERTER-driven Twin Rotary
	Compressor Model		SNB220FQGMC
	Compressor Rated Load Amps	A	12
outdoor unit	Compressor Locked Rotor Amps	A	13.7
	Compressor Oil Type // Charge	OZ.	FV50S // 23.7
	Base Pan Heater		Optional
		W: In. [mm]	37-13/32 [950]
	Unit Dimensions	D: In. [mm]	13 [330]
		H: In. [mm]	31-11/32 [796]
		W: In. [mm]	40-15/16 [1,040]
	Package Dimensions	D: In. [mm]	17-11/16 [450]
		H: In. [mm]	40-11/16 [1,033]
	Unit Weight	Lbs.[kg]	139 [63]
	Package Weight	Lbs.[kg]	159 [72]
	Cooling Intake Air Temp (Maximum / Minimum*A)	°FDB	115 / 14
	Cooling Thermal Lock-out / Re-start Temperatures	°FDB	10.4 / 14
utdoor unit operating temperature	Cooling Thermal Lock-out / Re-start Temperatures		05 / 5
	Heating Intake Air Temp (Maximum / Minimum)	°FWB	65 / 5
		°FWB °FDB	1.4 / 5
	Heating Intake Air Temp (Maximum / Minimum)		
Dutdoor unit operating temperature ange Refrigerant	Heating Intake Air Temp (Maximum / Minimum) Heating Thermal Lock-out / Re-start Temperatures	°FDB	1.4 / 5

⁴Heating at 5°F (Indoor // Outdoor)

°F 70 DB, 60 WB // 5 DB, 4 WB

*Applications should be restricted to comfort cooling only; equipment cooling applications are not recommended for low ambient temperature conditions. *A 5°F DB - 115°F DB when optional wind baffles are installed

For actual capacity performance based on indoor unit type and number of indoor units connected, please refer to MXZ Operational Performance. Although the maximum connectable capacity is 130%, the outdoor unit cannot provide more than 100% of the rated capacity. Please utilize this over capacity capability for load shedding or applications where it is known that all connected units will NOT be operating at the same time.

Conditions

SPECIFICATIONS: MXZ-4C36NA3

	Maximum Nur	nber of Connected IDU	4		
Indoor unit connection	Minimum Num	ber of Connected IDU			2
	Minimum conr	ected capacity		BTU/H	12,000
	Maximum con	nected capacity		BTU/H	42,000
	Liquid Pipe Siz	ze O.D. (Flared)		In.[mm]	A,B,C,D: 1/4 [A,B,C,D: 6.35]
	Gas Pipe Size	O.D. (Flared)		In.[mm]	A: 1/2; B,C,D: 3/8 [A: 12.72; B,C,D: 9.52]
	Total Piping Le	ngth		Ft. [m]	230 [70]
Piping	Maximum Hei	ght Difference, ODU above IDU		Ft. [m]	49 [15]
	Maximum Hei	ght Difference, ODU below IDU		Ft. [m]	49 [15]
	Farthest Pipin	g Length from ODU to IDU		Ft. [m]	82 [25]
	Maximum Nur	nber of Bends for IDU	70		
NOTES: AHRI Rated Conditions (Rated data is determined at a fixed compressor speed) ¹ Cooling (Indoor // Outdoor) ² Heating at 47°F (Indoor // O			°F °F °F	80 DB, 67 WB // 95 DB, 75 WB 70 DB, 60 WB // 47 DB, 43 WB 70 DB, 60 WB // 17 DB, 15 WB	

Conditions

^AApplications should be restricted to comfort cooling only; equipment cooling applications are not recommended for low ambient temperature conditions. ^A 5°F DB - 115°F DB when optional wind baffles are installed

⁴Heating at 5°F (Indoor // Outdoor)

For actual capacity performance based on indoor unit type and number of indoor units connected, please refer to MXZ Operational Performance. Although the maximum connectable capacity is 130%, the outdoor unit cannot provide more than 100% of the rated capacity. Please utilize this over capacity capability for load shedding or applications where it is known that all connected units will NOT be operating at the same time.

°F 70 DB, 60 WB // 5 DB, 4 WB

A.9.1 SPECIFICATIONS

Item Outdoor model			Outdoor model	MXZ-2C20NA2-U1			
literii			Indoor type	Non-Duct (09+09)	Duct (09+12)		
	Cooling	*1	Btu/h	18,000	20,000		
Capacity	Dacity Heating 47 *1		Btu/h	22,000	22,000		
	Heating 17	*2	Btu/h	1,2500	13,500		
5	Cooling	*1	W	1,417	2,000		
Power consumption	Heating 47	*1	W	1,641	1,771		
consumption	Heating 17	*2	W	1,300	1,350		
EER	Cooling			12.7	10.0		
SEER	Cooling			20.0	16.0		
HSPF IV(V)	Heating			10.0	9.3		
COP	Heating			3.93	3.64		
External finish				Munsell 3	.0Y 7.8/1.1		
Power supply			V, phase, Hz	208/23	0, 1, 60		
Max. fuse size (time	e delay)		A	2	20		
Min. circuit ampacit	У		A	1	7.2		
Fan motor			F.L.A	1.77			
	Model			SNB140FQUH2T			
Compressor	mpressor (at 68 °F) Ω		Ω	U-V1.99 V-W 1.99 W-U 1.99			
			R.L.A	10.7			
			L.R.A	15.5			
Refrigerant control				LEV			
Sound level			dB(A)	50/54			
Defrost method				Reverse cycle			
	W		in.	33-1/16			
Dimensions	D		in.	13			
	Н		in.	27-15/16			
Weight			lb.	126			
Remote controller				Wirele	ss type		
Control voltage (by built-in transformer)				12 - 2	4 VDC		
Refrigerant piping				Not supplied (optional parts)			
Valve size	Valve size Liquid ir		in.	1/4			
	Gas		in.	3/8			
Connection method	Indoor			Flared			
	Outdoor			Flared			
Refrigerant charge			lb.	5 lb. 15 oz.			
Refrigeration oil (M			fl oz. (L)	20.3 (0.6) (NEO22)			

NOTE: Test conditions are based on ARI 210/240.

					Unit: °F
Mode	Test		condition	Outdoor ai	r condition
woue	lest	Dry bulb	Wet bulb	Dry bulb	Wet bulb
Cooling	*1: "A" Cooling steady state at rated compressor speed	80	67	95	(75)
	"B-2" Cooling steady state at rated compressor speed	80	67	82	(65)
	"B-1" Cooling steady state at minimum compressor speed	80	67	82	(65)
	Low ambient cooling steady state at minimum compressor speed	80	67	67	(53.5)
	Intermediate cooling steady state at intermediate compressor speed	80	67	87	(69)
Heating	*1: Standard rating-heating at rated compressor speed	70	60	47	43
	*2: Low temperature heating at maximum compressor speed	70	60	17	15
	Maximum temperature heating at minimum compressor speed	70	60	62	56.5
	High temperature heating at minimum compressor speed	70	60	47	43
	Frost accumulation at rated compressor speed	70	60	35	33
	Frost accumulation at intermediate compressor speed	70	60	35	33

MITSUBISHI ELECTRIC CORPORATION

Item		Outdoor model	MXZ-3C24	INA2-U1	
llem		Indoor type	Non-Duct (06+09+09)	Duct (09+09+09)	
	Cooling *	1 Btu/h	22,000	23,600	
Capacity	Heating 47 *	1 Btu/h	25,000	24,600	
	Heating 17 *	2 Btu/h	19,600	19,600	
5	Cooling *	1 W	1,620	2,100	
Power consumption	Heating 47 *	1 W	1,750	1,900	
consumption	Heating 17 *	2 W	2,580	2,440	
EER	Cooling		13.6	11.2	
SEER	Cooling		20.0	16.0	
HSPF IV(V)	Heating		9.8 (7.6)	9.2 (7.6)	
COP	Heating		4.20	3.80	
External finish			Munsell 3.0)Y 7.8/1.1	
Power supply		V, phase, Hz	208/230	, 1, 60	
Max. fuse size (tim	ne delay)	A	25	5	
Min. circuit ampac	ity	A	22.	1	
Fan motor		F.L.A	2.43		
	Model		SNB220FQGMC		
Compressor	Winding resistand (at 68 °F)	ce Ω	U-V 0.95 V-W 0.95 W-U 0.95		
	•		12		
		L.R.A	13.7		
Refrigerant contro			LEV		
Sound level		dB(A)	51/55		
Defrost method			Reverse cycle		
	W	in.	37-13/32		
Dimensions	D	in.	13	}	
	Н	in.	31-11	/32	
Weight		lb.	13	7	
Remote controller			Wireles	s type	
Control voltage (by	y built-in transforme	r)	12-24 VDC		
Refrigerant piping			Not supplied (o	ptional parts)	
	Liquid	in.	1/2	1	
Valve size	Gas	in.	A:1/2 B,C:3/8		
Connection method	Indoor		Flared		
Connection method	Outdoor		Flared		
Refrigerant charge	e (R410A)	lb.	6lb. 13oz.		
Refrigeration oil (N	lodel)	fl oz. (L)	23.7 (0.7) (FV50S)		

NOTE: Test conditions are based on ARI 210/240.

	Conditions are based on Arti 210/240.				Unit: °F
Mode	Test	Indoor air	condition	Outdoor a	ir condition
Mode	lest	Dry bulb	Wet bulb	Dry bulb	Wet bulb
Cooling	*1: "A" Cooling steady state at rated compressor speed	80	67	95	(75)
	"B-2" Cooling steady state at rated compressor speed	80	67	82	(65)
	"B-1" Cooling steady state at minimum compressor speed	80	67	82	(65)
	Low ambient cooling steady state at minimum compressor speed	80	67	67	(53.5)
	Intermediate cooling steady state at intermediate compressor speed	80	67	87	(69)
Heating	*1: Standard rating-heating at rated compressor speed	70	60	47	43
	*2: Low temperature heating at maximum compressor speed	70	60	17	15
	Maximum temperature heating at minimum compressor speed	70	60	62	56.5
	High temperature heating at minimum compressor speed	70	60	47	43
	Frost accumulation at rated compressor speed	70	60	35	33
	Frost accumulation at intermediate compressor speed	70	60	35	33

Item		Outdo	or model	MXZ-4C36NA2-U1			
liem		Indo	or type	Non-Duct (09+09+09+09)	Duct (09+09+09+09)		
	Cooling	*1	Btu/h	35,400	34,400		
Capacity	Heating 47	*1	Btu/h	36,000	34,400		
	Heating 17	*2	Btu/h	26,600	26,600		
5	Cooling	*1	W	3,760	3,940		
Power consumption	Heating 47	*1	W	3,020	3,100		
consumption	Heating 17	*2	W	3,440	3,540		
EER	Cooling			9.4	8.7		
SEER	Cooling			19.2	16.0		
HSPF IV(V)	Heating			11.0 (8.4)	9.8 (8.4)		
COP	Heating			3.50	3.25		
External finish	•			Munsell 3.	0Y 7.8/1.1		
Power supply		V, ph	ase, Hz	208/230	0, 1, 60		
Max. fuse size (tin	ne delay)		A	2	5		
Min. circuit ampac	ity		A	22	.1		
Fan motor			F.L.A	2.43			
	Model			SNB220FQGMC			
Compressor	Winding resista (at 68 °F)	Vinding resistance Ω at 68 °F)		U-V 0.95 V-W 0.95 W-U 0.95			
	•		R.L.A	12			
			L.R.A	13.7			
Refrigerant contro				LEV			
Sound level			dB(A)	54/56			
Defrost method				Reverse cycle			
	W		in.	37-13/32			
Dimensions	D		in.	13			
	Н		in.	31-1	1/32		
Weight	·		lb.	13	9		
Remote controller				Wireles	ss type		
Control voltage (b	y built-in transform	ner)		12-24	VDC		
Refrigerant piping				Not supplied (optional parts)		
Valve size	Liquid		in.	1/4			
valve size	Gas		in.	A:1/2 B,	C,D:3/8		
Connection method	Indoor			Flared			
	Outdoor			Flared			
Refrigerant charge	e (R410A)		lb.	6lb. 13oz.			
Refrigeration oil (M	Nodel)	1	1 oz. (L)	23.7 (0.7) (FV50S)			

NOTE: Test conditions are based on ARI 210/240.

	Conditions are based on Arti 210/240.				Unit: °F
Mode	Taat		condition	Outdoor a	ir condition
Mode	Test	Dry bulb	Wet bulb	Dry bulb	Wet bulb
Cooling	*1: "A" Cooling steady state at rated compressor speed	80	67	95	(75)
	"B-2" Cooling steady state at rated compressor speed	80	67	82	(65)
	"B-1" Cooling steady state at minimum compressor speed	80	67	82	(65)
	Low ambient cooling steady state at minimum compressor speed	80	67	67	(53.5)
	Intermediate cooling steady state at intermediate compressor speed	80	67	87	(69)
Heating	*1: Standard rating-heating at rated compressor speed	70	60	47	43
	*2: Low temperature heating at maximum compressor speed	70	60	17	15
	Maximum temperature heating at minimum compressor speed	70	60	62	56.5
	High temperature heating at minimum compressor speed	70	60	47	43
	Frost accumulation at rated compressor speed	70	60	35	33
	Frost accumulation at intermediate compressor speed	70	60	35	33

MLZ-KP12NA2 12,000 BTU/H EZ FIT CEILING CASSETTE

Job Name:

System Reference:

GENERAL FEATURES

- Fits between 16" joists spacing
- Stylish, square design panel
- Built-in condensate lift mechanism (19.6")
- · Serviceable from the bottom (electrical and flare connections)

Date:

- Adjustable fan speeds and vane directions
- Washable antibacterial and deodorizing filter
- Multiple control options available:
 - $\circ~$ Hand-held Remote Controller (provided with unit)
 - $\circ~\mbox{kumo cloud}^{\mbox{\tiny B}}$ smart device app for remote access
 - $\circ~$ Third-party interface options
 - $\circ~$ Wired or wireless controllers
- · Pocket inside the access panel for kumo cloud® Wireless Interface

	Specifications		System
	MLZ-KP12NA2		
Cooling Capacity ^{1, 3}	BTU/H	12,000	
Heating Capacity ^{2, 3}		BTU/H	15,400
	Voltage, Phase, Frequency		208/230, 1, 60
	Guaranteed Voltage Range	V AC	187- 253V
Electrical	Voltage: Indoor - Outdoor, S1-S2	V AC	208/230
	Voltage: Indoor - Outdoor, S2-S3	V DC	24
	Short-circuit Current Rating [SCCR]	kA	5
	MCA	A	1.0
	Fan Motor Full Load Amperage	A	0.68
	Airflow Rate at Cooling, Dry	CFM	212-272-297-332
	Airflow Rate at Cooling, Wet	CFM	180-219-252-282
	Airflow Rate at Heating, Dry	CFM	212-272-311-350
	Sound Pressure Level [Cooling]	dB[A]	27-32-36-40
	Sound Pressure Level [Heating]	dB[A]	26-32-36-40
Indoor Unit	Drain Pipe Size	In. [mm]	1-1/4 [32]
	Condensate Lift Mechanism, Maximum Distance	In. [mm]	19-11/16 [500]
	Coating on Heat Exchanger	_	
	External Finish Color	Munsell 4.0GY 9.1/0.2	
	Unit Dimensions	W x D x H: In. [mm]	43-3/8 x 14-3/16 x 7-5/16 [1,102 x 360 x 185]
	Package Dimensions	W x D x H: In. [mm]	46-5/16 x 15-3/4 x 11-1/8 [1,177 x 400 x 284
	Unit Weight	Lbs. [kg]	34 [15.5]
	Package Weight	Lbs. [kg]	41 [19.0]
Refrigerant	Туре		R410A
Dining	Gas Pipe Size O.D. [Flared]	In.[mm]	3/8 [9.52]
Piping	Liquid Pipe Size O.D. [Flared]	In.[mm]	1/4 [6.35]
OTES: onditions		7 WB // 95 DB, 75 WB 0 WB // 47 DB, 43 WB	

³Capacity varies based on the number of indoor units operating and the model of the Multi-zone Outdoor Unit. For reference to connected capacity charts, please refer Multi-zone Outdoor Unit Operational Performance.:

SPECIFICATIONS: MSZ-GL06NA

Cooling Capacity ^{1, 3}		BTU/H	6,000
Heating Capacity ^{2, 3}		BTU/H	7,200
Voltage, Phase, Frequency			208/230V, 1 phase, 60Hz
	Guaranteed Voltage Range	V AC	187 - 253
Electrical	Voltage: Indoor - Outdoor, S1-S2	V AC	208 / 230
	Voltage: Indoor - Outdoor, S2-S3	V DC	24
	Short-circuit Current Rating (SCCR)		Wireless Type
MCA		A	1
Blower Motor Full Load Amper	rage	A	0.76
Blower Motor Output		w	30
Airflow Rate at Cooling, Dry		CFM	145-170-237-321-399
Airflow Rate at Cooling, Wet		CFM	109-134-201-286-364
Airflow Rate at Heating, Dry		CFM	145-170-237-321-406
Sound Pressure Level (Cooling	g)	dB(A)	19-22-30-37-43
Sound Pressure Level (Heating	g)	dB(A)	19-22-30-37-43
Drain Pipe Size		In. (mm)	5/8 (15.88)
Heat Exchanger Type			Plate fin coil
External Finish Color			Munsell 1.0Y 9.2/0.2
		W: In. (mm)	31-7/16 (798)
Jnit Dimensions		D: In. (mm)	9-1/8 (232)
		H: In. (mm)	11-5/8 (295)
		W: In. (mm)	33-1/2 (850)
Package Dimensions		D: In. (mm)	12 (300)
		H: In. (mm)	14 (350)
Unit Weight		Lbs. (kg)	22 (10)
Package Weight		Lbs. (kg)	26 (11.5)
Refrigerant	Туре		R410A
Disise	Gas Pipe Size O.D. (Flared)	In. (mm)	3/8 (9.52)
Piping	Liquid Pipe Size O.D. (Flared)	In. (mm)	1/4 (6.35)

Notes:

Nominal Conditions	¹ Cooling (Indoor // Outdoor)		80 DB, 67 WB // 95 DB, 75 WB		
Norminal Conditions	² Heating at 47°F (Indoor // Outdoor) °F 70 DB, 6		70 DB, 60 WB // 47 DB, 43 WB		
³ Capacity varies based on the number of indoor units operating and the model of the Multi-zone Outdoor Unit. For reference to connected capacity charts, please refer Multi-zone Outdoor Unit					

³Capacity varies based on the number of indoor units operating and the model of the Multi-zone Outdoor Unit. For reference to connected capacity charts, please refer Multi-zone Outdoor Unit Operational Performance.

SPECIFICATIONS: MSZ-GL12NA

Cooling Capacity ^{1, 3}		BTU/H	12,000		
Heating Capacity ^{2, 3}		BTU/H	14,400		
	Voltage, Phase, Frequency		208/230V, 1 phase, 60Hz		
	Guaranteed Voltage Range	V AC	187 - 253		
Electrical	Voltage: Indoor - Outdoor, S1-S2	V AC	208 / 230		
	Voltage: Indoor - Outdoor, S2-S3	V DC	24		
	Short-circuit Current Rating (SCCR)	·	5		
MCA		A	1		
Blower Motor Full Load Amper	rage	A	0.76		
Blower Motor Output		W	30		
Airflow Rate at Cooling, Dry		CFM	399-321-237-170-145		
Airflow Rate at Cooling, Wet		CFM	364-286-201-134-109		
Airflow Rate at Heating, Dry		CFM	406-321-237-170-145		
Sound Pressure Level (Cooling)		dB(A)	45-37-30-22-19		
Sound Pressure Level (Heating)		dB(A)	43-37-30-22-19		
Drain Pipe Size		In. (mm)	5/8 (15.88)		
Heat Exchanger Type		·	Plate fin coil		
External Finish Color			Munsell 1.0Y 9.2/0.2		
		W: In. (mm)	31-7/16 (798)		
Unit Dimensions		D: In. (mm)	9-1/8 (232)		
		H: In. (mm)	11-5/8 (295)		
		W: In. (mm)	33-1/2 (850)		
Package Dimensions		D: In. (mm)	12 (300)		
		H: In. (mm)	14 (350)		
Unit Weight		Lbs. (kg)	22 (10)		
Package Weight		Lbs. (kg)	26 (11.5)		
Refrigerant	Туре		R410A		
Dining	Gas Pipe Size O.D. (Flared)	In. (mm)	3/8 (9.52)		
Piping	Liquid Pipe Size O.D. (Flared)	In. (mm)	1/4 (6.35)		

Notes:

Nominal Conditions	¹ Cooling (Indoor // Outdoor)	°F 80 DB, 67 WB // 95 DB, 75 WB		
Nominal Conditions	² Heating at 47°F (Indoor // Outdoor)	°F	70 DB, 60 WB // 47 DB, 43 WB	
³ Capacity varies based on the number of indoor units operating and the model of the Multi-zone Outdoor Unit. For reference to connected capacity charts, please refer Multi-zone Outdoor Unit				

³Capacity varies based on the number of indoor units operating and the model of the Multi-zone Outdoor Unit. For reference to connected capacity charts, please refer Multi-zone Outdoor Unit Operational Performance.

SLZ-KF12NA 12,000 BTU/H 2' X 2' 4-WAY CEILING CASSETTE

Job Name:

System Reference:

GENERAL FEATURES

- Ceiling-recessed cassette (24"x24") ductless heat pump
- Install Konnect Series in a drywalled ceiling (with an access panel for servicing) or in a 2'x2' drop ceiling
- · Wide airflow pattern for excellent air distribution
- Optional 3D i-see Sensor[®]
- · Fresh air intake provided in the main body
- Built-in drain condensate lift mechanism (lifts to 33")
- Multiple control options available:
 - $\circ~$ kumo cloud® smart device app for remote access
 - Third-party interface options
 - $\circ~$ Wired or wireless controllers
- Long-life air filter included
- Individual vane control

	Specifications		System		
	SLZ-KF12NA				
Cooling Capacity ^{1,3}			12,000		
Heating Capacity ^{2, 3}		BTU/H	13,000		
	Voltage, Phase, Frequency		208/230, 1, 60		
	Guaranteed Voltage Range	V AC	187- 253V		
Electrical	Voltage: Indoor - Outdoor, S1-S2	V AC	208/230		
	Voltage: Indoor - Outdoor, S2-S3	V DC	24		
	Short-circuit Current Rating [SCCR]	kA	5		
	MCA	A	0.3		
	Fan Motor Full Load Amperage	A	0.24		
	Airflow Rate at Cooling, Dry	CFM	230–265–335		
	Airflow Rate at Cooling, Wet	CFM	207-252-302		
	Airflow Rate at Heating, Dry	CFM	230–265–335		
	Sound Pressure Level [Cooling]	dB[A]	25–30–34		
	Sound Pressure Level [Heating]	dB[A]	25–30–34		
Indoor Unit	Drain Pipe Size	In. [mm]	1-1/4 [32]		
	Condensate Lift Mechanism, Maximum Distance	In. [mm]	33 [850]		
	Coating on Heat Exchanger	_			
	External Finish Color	Munsell 1.0Y 9.2/0.0			
	Unit Dimensions	W x D x H: In. [mm]	22-7/16 x 22-7/16 x 9-21/32 [570 x 570 x 245]		
	Package Dimensions	W x D x H: In. [mm]	24-13/32 x 27-15/16 x 9-7/16 [620 x 710 x 240		
	Unit Weight	Lbs. [kg]	31 [13.9]		
	Package Weight	Lbs. [kg]	37 [17]		
Refrigerant	Туре		R410A		
Diping	Gas Pipe Size O.D. [Flared]	In.[mm]	3/8 [9.52]		
Piping	Liquid Pipe Size O.D. [Flared]	In.[mm]	1/4 [6.35]		
OTES: onditions		NB // 95 DB, 75 WB NB // 47 DB, 43 WB			

³Capacity varies based on the number of indoor units operating and the model of the Multi-zone Outdoor Unit. For reference to connected capacity charts, please refer Multi-zone Outdoor Unit Operational Performance.

M-SERIES

M-Series Efficiencies

Outloof Unit Mooil Indoor Unit Mooil Conting. (Heating) SEEK EX MPP ()				Rated C	apacity		i		COP	СОР
WALL-MOUNTED COLING ONLY MUY-GL09NA-U1 Mini-Spitts 9.000 24.60 15.40 . . MUY-GL09NA-U1 Mini-Spitts 12.000 - 23.10 13.00 . . . MUY-GL19NA-U1 Mini-Spitts 12.000 - 22.50 13.40 . . . MUY-GL2NA-U1 Mini-Spitts 12.000 - 22.50 12.50 .	Outdoor Unit Model	Indoor Unit Model	Configuration		<u> </u>	SEER	EER	HSPF		
MUY-GL28A-UI MNS-Glis 120.00 . 23.10 13.00 . UVYGE 19NALMSYGE 15NAUMSYGE 1		•	WALL-MOU	, ,	G ONLY					
MUY-GL28A-UI MNS-Glis 120.00 . 23.10 13.00 . UVYGE 19NALMSYGE 15NAUMSYGE 1	MUY-GL09NA-U1	MSY-GL09NA-U1	Mini-Splits	9 000	_	24 60	15 40	-	-	-
MUY-GLISNA-U1 Mmi-Spits 14.000 . 21.00 13.00 MUY-GLISNA-U1 Mmi-Spits 22.500 . 20.50 12.60 .			· · · · · · · · · · · · · · · · · · ·	,					-	-
MUY-GLIBNA-U1 Mm-Spits 16:000 - 20:00 13:00 - - - MUY-GERMA-U1 Mm-Spits 9:000 - 21:0 13:6 - - - MUY-GERMA-M Mm-Spits 9:000 - 20:5 12:5 - - - MUY-GERMA-M Mm-Spits 12:000 - 20:5 12:5 - - - MUY-GERMA-M Mm-Spits 17:200 - 19:0 12:5 - - - MUY-GERMA-A Mm-Spits 22:000 - 22:7 12:5 - - - MUY-GERMA-2 MSY-GERMA-3 Mm-Spits 12:000 - 22:7 12:5 - - - - - MUY-GERMA-2 MSY-GERMA-3 Mm-Spits 20:000 - 15:8 22:0 10:0 4:00 3:00 - - - - - - - - - - -			· · · · · · · · · · · · · · · · · · ·	,				_	-	-
MUY-GL2NN-U1 MSY-GL2NN-L11 Mint-Spits 22,500 - 20.66 12.50 - - - MUY-GEDNA MSY-GET2NA-R Mint-Spits 12,000 - 21.0 13.8 - - - MUY-GETSNA-R Mint-Spits 14,000 - 21.0 13.0 - - - MUY-GETSNA-R Mint-Spits 17,200 - 19.2 10.5 - - - MUY-GETSNA-R Mint-Spits 22,400 - 19.0 12.5 - - - MUY-GETSNA-2 MSY-GETSNA-8 Mint-Spits 22,000 - 23.2 13.8 - - - - MUY-GETSNA-2 MSY-GETSNA-8 Mint-Spits 30.600 - 15.1 8.2 -			· · ·	,				_	-	-
MUY-GEOBNA MSY-GEOBNA-8 Mmi-Spirts 9.000 - 210 13.6 - - - MUY-GE T2NA-8 Mmi-Spirts 14.000 - 210.5 12.5 - - - MUY-GE T3NA-8 Mmi-Spirts 17.200 - 19.0 12.5 - - - MUY-GE T3NA-8 Mmi-Spirts 22.400 - 19.0 12.5 -			· · · · · · · · · · · · · · · · · · ·	,				-	-	-
NUY-GE TENA. MSY-GE TENA.48 Mmin-Spirts 12,000 - 20.5 . . . NUY-GE TENA.48 Mmin-Spirts 11,200 . 19.2 10.5 . . . NUY-GE TENA.48 Mmin-Spirts 22,00 . 19.2 10.5 . . . NUY-GE TENA.49 Mmin-Spirts 22,00 . 19.2 13.6 . . . NUY-GE TENA.49 Mmin-Spirts 12,000 . 22.7 12.5 . <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td>-</td> <td>-</td>			· · · · · · · · · · · · · · · · · · ·		_			_	-	-
MUY-GE TISNA-1 MSY-GE TISNA-8 Mmin-Spits 14.000 . 210 13.0 . . . MUY-GE TISNA-1 MSY-GE TISNA-8 Mmin-Spits 12.2400 . 19.2 10.5 . . . MUY-GE TISNA-2 MSY-GE TISNA-9 Mmin-Spits 9.200 . 23.2 13.6 . <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>,</td> <td>-</td> <td>!</td> <td></td> <td>-</td> <td>-</td> <td>-</td>			· · · · · · · · · · · · · · · · · · ·	,	-	!		-	-	-
NUY-GE18NA-1 MSY-GE18NA-8 Mmi-Spitts 17.200 . 12.2 10.5 . . . NUY-GE2NA MSY-GE2PNA-9 Mmi-Spitts 22.00 - 22.7 12.5 . . . NUY-GE2NA MSY-GE2PNA-9 Mmi-Spitts 12.00 . 22.7 12.5 . <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>,</td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>			· · · · · · · · · · · · · · · · · · ·	,	-			-	-	-
MUY-GE24NA MSY-GE24NA Mmi-Spits 9.2400 - 10.0 12.5 - -			· · · · · · · · · · · · · · · · · · ·	,	-			-	-	-
MUY-GE09NA2 MSY-GE09NA9 Mmi-Spitts 19,000 - 22.2 13.6 - - - MUY-GE 12NA.9 Mmi-Spitts 14.000 - 21.6 13.0 - - - MUY-D30NA MSY-D20NA Mmi-Spitts 33.600 - 16.0 9.1 - <			· · · · · · · · · · · · · · · · · · ·	,	-			-	-	-
MUY-GE12NA2 MSY-GE12NA-9 Mmi-Spits 12.000 - 22.7 12.5 - - - MUY-GE19NA-9 Mmi-Spits 10.000 - 16.1 9.1 - <			· · · · · · · · · · · · · · · · · · ·		-			-	-	-
MUY-GE18NA2 MSY-GE18NA9 Mni-Spits 14,000 - 16 13.0 - - MUY-D38NA MSY-D38NA Mni-Spits 34,600 - 15.1 8.2 - - MUZ-FE08NA MSZ-FE09NA Mni-Spits 94,000 10,900 15.5 26.0 10.0 4.50 3.02 MUZ-FE12NA1 MSZ-FE12NA Mni-Spits 12,000 13,600 14.2 20.2 10.3 4.11 2.77 MUZ-FE12NA1 MSZ-FE12NA Mni-Spits 6.000 8.700 33.1 19.0 13.5 4.68 3.46 MUZ-FH08NA MSZ-FH08NA Mni-Spits 9.000 10.900 30.5 16.1 13.5 4.50 3.33 MUZ-FH08NA MSZ-FH08NA Mni-Spits 12.000 13.800 26.1 13.8 12.5 4.20 3.34 MUZ-FH18NA MSZ-FH18NA Mni-Spits 12.000 13.600 26.1 13.8 12.5 4.20 3.44 MUZ-FH18NA <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>,</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td>			· · · · · · · · · · · · · · · · · · ·	,	-	-		-	-	-
MUY-D30NA MSY-D30NA Mini-Spits 30,600 - 16.0 9.1 - - - MUY-D36NA Mini-Spits 34,600 - 15.1 8.2 - - MUZ-FE09NA Mini-Spits 9,000 10,900 15.5 26.0 10.0 4.50 3.01 MUZ-FE12NA MSZ-FE12NA Mini-Spits 12.000 13.800 12.9 2.30 10.5 4.20 3.01 MUZ-FE12NA MSZ-FE13NA Mini-Spits 10.000 13.600 12.9 2.30 10.5 4.60 3.31 10.0 13.6 4.80 3.4 4.20 3.41 1.25 4.20 3.34 MUZ-FH03NA Mini-Spits 12.000 13.600 26.1 13.8 12.5 4.20 3.34 MUZ-FH12NA MSZ-FH03NA Mini-Spits 12.000 13.600 26.1 13.8 12.5 4.20 3.34 MUZ-FH12NA MSZ-FH13NA Mini-Spits 12.000 14.000 21.0			· · · · · · · · · · · · · · · · · · ·	,	-			-	-	-
MUZ-PD36NA MSY-D36NA Mini-Splits 34.600 - 15.1 8.2 - - WALL-MOUNTED HEAT PUMP MUZ-FE19NA MSZ-FE12NA Mini-Splits 12.000 13.600 12.9 23.0 10.5 4.20 3.01 MUZ-FE11NA MSZ-FE12NA Mini-Splits 12.000 13.600 14.2 22.0 10.3 4.11 2.77 MUZ-FE13NA MSZ-FH09NA Mini-Splits 6.000 8.700 33.1 19.0 13.5 4.68 3.46 MUZ-FH09NA MSZ-FH09NA Mini-Splits 9.000 10.900 30.5 16.1 13.5 4.50 3.33 MUZ-FH12NA MSZ-FH12NA-1 Mini-Splits 12.000 13.600 26.1 13.8 12.5 4.20 3.34 MUZ-FH13NA MSZ-FH13NA Mini-Splits 12.000 13.600 26.1 13.8 12.5 4.20 3.34 MUZ-FH13NA MSZ-FH13NA Mini-Splits 12.000 13.600 21.0 <td< td=""><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td>,</td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td></td<>			· · · · · · · · · · · · · · · · · · ·	,	-			-	-	-
WALL-MOUNTED HEAT PUMP MUZ-FE09NA1 MSZ-FE19NA MIni-Splits 9.000 10.900 15.5 26.0 10.0 4.50 3.02 MUZ-FE19NA1 MSZ-FE18NA Mini-Splits 12.000 13.600 12.9 23.0 10.5 4.20 3.01 MUZ-FH08NA MSZ-FE18NA Mini-Splits 6.000 8.700 33.1 19.0 13.5 4.68 3.46 MUZ-FH09NA MSZ-FE19NA Mini-Splits 9.000 10.900 30.6 16.1 13.5 4.50 3.33 MUZ-FH09NA MSZ-FH12NA Mini-Splits 12.000 13.600 26.1 13.8 12.5 4.20 3.34 MUZ-FH12NA MSZ-FH13NA Mini-Splits 17.200 20.300 21.0 12.0 4.66 3.19 MUZ-FH18NA Mini-Splits 17.200 20.300 21.0 12.0 12.6 12.0 4.66 3.04 MUZ-FH18NA Mini-Splits 17.200 20.300 21.0 12.5 <td< td=""><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td>,</td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td></td<>			· · · · · · · · · · · · · · · · · · ·	,	-			-	-	-
MUZ-FE09NA MSZ-FE09NA Mini-Spitts 9,000 10,000 15.5 26.0 10.0 4.50 3.02 MUZ-FE12NA1 MSZ-FE13NA Mini-Spitts 12,000 13,600 12.9 23.0 10.5 4.20 3.01 MUZ-FE10NA MSZ-FE10NA Mini-Spitts 6,000 8,700 13,600 12.9 22.0 10.3 4.11 2.77 MUZ-FH0NA MSZ-FH0SNA Mini-Spitts 9,000 10,900 30.5 16.1 13.5 4.50 3.33 MUZ-FH12NA MSZ-FH0SNA-1 Mini-Spitts 12,000 13,800 26.1 13.8 12.5 4.20 3.34 MUZ-FH12NA MSZ-FH13NA Mini-Spitts 12,000 13,600 26.1 13.8 12.5 4.20 3.34 MUZ-FH18NA MSZ-FH13NA Mini-Spitts 12,000 13,600 26.1 13.8 12.5 4.20 3.44 3.04 MUZ-FH18NA MSZ-FH15NA Mini-Spitts 17,200 20,300 11.0			· · · ·							
NUZ-FE12NA1 MSZ-FE12NA Mini-Splits 12,000 13,600 12.9 23.0 10.5 4.20 3.01 MUZ-FE18NA MSZ-FE18NA Mini-Splits 16,000 21,600 14.2 20.2 10.3 4.11 2.77 MUZ-FH08NA MSZ-FH09NA Mini-Splits 9,000 10,900 30.5 16.1 13.5 4.50 3.33 MUZ-FH08NA MSZ-FH09NA MSZ-FH12NA Mini-Splits 12,000 13,600 26.1 13.8 12.5 4.20 3.34 MUZ-FH12NA MSZ-FH12NA Mini-Splits 12,000 13,600 26.1 13.8 12.5 4.20 3.34 MUZ-FH18NA MSZ-FH18NA Mini-Splits 17,200 20,300 21.0 12.0 3.46 3.04 MUZ-FH18NA MSZ-FH18NA Mini-Splits 17,200 20,300 21.0 12.0 3.46 3.34 MUZ-GL12NA-U1 Mini-Splits 17,200 20,300 21.0 13.6 12.0 3.48 3.13						15.5	26.0	10.0	4.50	2.02
NUZ_FET8NA MSZ-FET8NA Mini-Spitts 16.000 21.600 44.2 20.2 10.3 4.11 2.77 MUZ_FH06NA MSZ-FH06NA Mini-Spitts 6.000 8.700 33.1 19.0 13.5 4.68 3.46 MUZ-FH09NA MSZ-FH09NA Mini-Spitts 9.000 10.900 30.5 16.1 13.5 4.50 3.33 MUZ-FH19NA MSZ-FH12NA Mini-Spitts 12.000 13.600 26.1 13.8 12.5 4.20 3.34 MUZ-FH13NA MSZ-FH18NA Mini-Spitts 17.200 20.300 21.0 12.0 12.0 6.6 3.19 MUZ-FH18NA MSZ-FH18NA Mini-Spitts 17.200 20.300 21.0 12.0 12.0 3.46 3.04 MSZ-GL12NA-U1 Mini-Spitts 17.200 20.300 21.0 12.5 12.0 3.46 3.13 MUZ-GL12NA-U1 Mini-Spitts 12.000 14.400 13.0 12.6 10.0 3.30 3.00			· · · · · · · · · · · · · · · · · · ·		,					
MUZ_FHOBNA MISZ-FHOBNA Mini-Spitts 6.000 8.700 3.31 19.0 13.5 4.68 3.46 MUZ-FHOBNA MISZ-FHOBNA-1 Mini-Spitts 9.000 10.900 30.5 16.1 13.5 4.60 3.33 MUZ-FHOBNA MISZ-FHOBNA-1 Mini-Spitts 12.000 13.600 26.1 13.8 12.5 4.20 3.34 MUZ-FH12NA MSZ-FH12NA MSZ-FH12NA MISZ-FH12NA MISZ-FH18NA Mini-Spitts 17.200 20.300 21.0 12.0 4.06 3.19 MUZ-FH18NA MSZ-FH18NA Mini-Spitts 17.200 20.300 21.0 12.0 3.46 3.04 MUZ-FH18NA MSZ-FH18NA Mini-Spitts 17.200 20.300 21.0 12.0 3.46 3.04 MUZ-GLISNA-U1 MINI-Spitts 12.000 14.400 23.10 13.0 17.00 3.34 3.13 MUZ-GLISNA-U1 MINI-Spitts 12.000 14.400 23.10 13.0 11.00 3.46			· · · · · · · · · · · · · · · · · · ·	,	,					
MUZ-FHO9NA MSZ-FHO9NA Mini-Splits 9,000 10,900 30.5 16.1 13.5 4.50 3.33 MUZ-FH12NA MSZ-FH09NA-1 Mini-Splits 9,000 10,900 30.5 16.1 13.5 4.50 3.33 MUZ-FH12NA MSZ-FH12NA-1 Mini-Splits 12,000 13,600 26.1 13.8 12.5 4.20 3.34 MUZ-FH12NA MSZ-FH15NA Mini-Splits 12,000 13,600 26.1 13.8 12.5 4.20 3.34 MUZ-FH15NA MSZ-FH15NA Mini-Splits 17,200 20,300 21.0 12.0 3.46 3.04 MUZ-GL12NA-U1 MSZ-GL12NA-U1 Mini-Splits 17,200 20,300 21.0 12.5 13.0 12.50 3.84 3.13 MUZ-GL12NA-U1 MSZ-GL12NA-U1 Mini-Splits 12.000 14,400 23.10 13.0 12.50 3.84 3.13 MUZ-GL12NA-U1 MSZ-GL12NA-U1 Mini-Splits 14.000 28.100 13.60 14.0			· · · · · · · · · · · · · · · · · · ·	,	,					
MUZ-FH09NA MSZ-FH09NA-1 Mm-Splits 9.000 10.900 30.5 11.1 13.5 4.50 3.33 MUZ-FH12NA MSZ-FH12NA Min-Splits 12.000 13.600 26.1 13.8 12.5 4.20 3.34 MUZ-FH12NA MSZ-FH18NA Min-Splits 15.000 18.000 22.0 12.5 12.0 4.06 3.19 MUZ-FH18NA MSZ-FH18NA Min-Splits 17.200 20.300 21.0 12.0 12.0 3.46 3.04 MUZ-GL12NA-U1 MSZ-GL09NA-U8 Min-Splits 17.200 20.300 21.0 12.0 3.46 3.04 MUZ-GL12NA-U1 MSZ-GL12NA-U1 Min-Splits 12.000 14.400 23.10 13.0 12.50 3.84 3.13 MUZ-GL1SNA-U1 MSZ-GL12NA-U1 Min-Splits 14.000 18.000 21.60 13.4 11.20 3.46 2.67 MUZ-GL1SNA-U1 MSZ-GL12NA Min-Splits 14.000 16.00 2.160 13.6 10.0				,	,				-	
MUZ-FH12NA MSZ-FH12NA Mini-Spits 12,000 13,600 26.1 13.8 12.5 4.20 3.34 MUZ-FH12NA MSZ-FH15NA Mini-Spits 12,000 13,600 26.1 13.8 12.5 4.20 3.34 MUZ-FH18NA MSZ-FH15NA Mini-Spits 15,000 12.0 12.0 4.06 3.04 MUZ-FH18NA MSZ-FH18NA Mini-Spits 17,200 20,300 21.0 12.0 3.46 3.04 MUZ-FH18NA MSZ-GL12NA-U1 Mini-Spits 17,200 20,300 21.0 12.5 12.0 3.46 3.04 MUZ-GL12NA-U1 MSZ-GL12NA-U1 Mini-Spits 17,200 20,300 21.0 13.0 11.70 3.30 3.00 MUZ-GL18NA-U1 MSZ-GL12NA-B Mini-Spits 14,000 18.000 21.601 13.4 11.20 3.77 2.73 MUZ-GE18NA-U1 MSZ-GE12NA-8 Mini-Spits 12,000 14,400 20.5 12.5 10.0 3.61 2.87			· · · · · · · · · · · · · · · · · · ·	,	,					
MUZ-FH12NA MSZ-FH12NA-1 Mini-Spits 12,000 13,600 26.1 13.8 12.5 4.20 3.34 MUZ-FH15NA MSZ-FH18NA Mini-Spits 15,000 16,000 22.0 12.5 12.0 4.06 3.19 MUZ-FH18NA MSZ-FH18NA Mini-Spits 17,200 20,300 21.0 12.5 12.0 3.46 3.04 MUZ-FH18NA2 MSZ-GL12NA-U1 Mini-Spits 9,000 10,900 24.6 15.4 12.8 4.44 3.3 MUZ-GL12NA-U1 MSZ-GL15NA-U1 Mini-Spits 12.000 14.400 23.10 13.0 12.50 3.84 3.13 MUZ-GL18NA-U1 MSZ-GL18NA-U1 Mini-Spits 12.000 14.600 13.00 11.70 3.30 3.00 MUZ-GL18NA-U1 MSZ-GL28NA Mini-Spits 12.000 14.400 20.50 13.4 11.20 3.77 2.73 MUZ-GE18NA-8 Mini-Spits 12.000 14.400 25.5 10.0 3.33 2.71			· · · · · · · · · · · · · · · · · · ·		- ,					
MUZ-FH15NA MSZ-FH15NA Mini-Splits 15,000 18,000 22.0 12.5 12.0 4.06 3.19 MUZ-FH18NA MSZ-FH18NA2 Mini-Splits 17,200 20,300 21.0 12.0 3.46 3.04 MUZ-FH18NA2 MSZ-FH18NA2 Mini-Splits 17,200 20,300 21.0 12.6 12.0 3.46 3.04 MUZ-FH18NA MSZ-GL12NA-U1 MSZ-GL12NA-U1 Mini-Splits 12,000 14,400 23.10 13.0 11.70 3.30 3.00 MUZ-GL15NA-U1 MSZ-GL18NA-U1 Mini-Splits 14,000 21.60 20.50 13.4 11.20 3.77 2.73 MUZ-GE1NA-U1 MSZ-GE12NA-8 Mini-Splits 12,000 14,400 20.50 12.5 10.00 3.46 2.65 MUZ-GE1SNA-1 MSZ-GE12NA-8 Mini-Splits 12,000 14,400 20.5 12.5 10.0 3.33 2.71 MUZ-GE1SNA-1 MSZ-GE1SNA-8 Mini-Splits 12,000 14,400 22.76			· · · · · · · · · · · · · · · · · · ·	,	,					
MUZ-FH18NA MSZ-FH18NA Mini-Splits 17,200 20,300 21.0 12.0 14.0 3.46 3.04 MUZ-FH18NA2 MSZ-FL18NA2 Mini-Splits 17,200 20,300 21.0 12.0 3.46 3.04 MUZ-GL09NA-U1 MUZ-GL09NA-U8 Mini-Splits 9.000 10,900 24.6 15.4 12.8 4.44 3.3 MUZ-GL12NA-U1 MSZ-GL12NA-U1 Mini-Splits 14.000 14.400 23.10 13.0 12.50 3.84 3.13 MUZ-GL18NA-U1 MSZ-GL24NA-U1 Mini-Splits 12.000 14.400 23.60 13.0 11.70 3.30 3.00 MUZ-GL24NA-U1 MSZ-GE12ANA-U1 Mini-Splits 12.000 14.400 20.5 12.5 10.00 3.46 2.65 MUZ-GE1SNA-1 MSZ-GE1SNA-8 Mini-Splits 12.000 14.400 20.5 12.5 10.0 3.33 2.76 MUZ-GE1SNA-1 MSZ-GE1SNA-8 Mini-Splits 12.000 14.400 12.5 10.0			· · · · · · · · · · · · · · · · · · ·	,	,					
MUZ-FH18NA2 Mini-Splits 17,200 20,300 21.0 12.5 12.0 3.46 3.04 MSZ-GLO9NA-U1 MUZ-GLO9NA-U8 Mini-Splits 9,000 10,900 24.6 15.4 12.8 4.44 3.3 MUZ-GL12NA-U1 MSZ-GL12NA-U1 Mini-Splits 14,000 13.00 11.70 3.30 3.00 MUZ-GL18NA-U1 MSZ-GL18NA-U1 Mini-Splits 14,000 21,600 20.50 13.4 11.20 3.77 2.73 MUZ-GL18NA-U1 MSZ-GE12NA-B Mini-Splits 22,000 27,600 20.50 12.5 10.00 3.46 2.65 MUZ-GE1NA-U1 MSZ-GE12NA-8 Mini-Splits 12,000 14,400 20.5 12.5 10.0 3.46 2.65 MUZ-GE1SNA-1 MSZ-GE12NA-8 Mini-Splits 17,200 21,600 19.2 10.5 10.0 3.30 2.88 MUZ-GE1SNA-1 MSZ-GE12NA-8 Mini-Splits 17,200 21,600 19.2 10.5 10.0 3.46 2.			· · · · · · · · · · · · · · · · · · ·	,	,					
MSZ-GL09NA-U1 MUZ-GL09NA-U8 Mini-Splits 9,000 10,900 24.6 15.4 12.8 4.44 3.3 MUZ-GL12NA-U1 Mini-Splits 12,000 14,400 23.10 13.0 12.50 3.84 3.13 MUZ-GL1SNA-U1 Mini-Splits 14,000 21.60 13.0 11.70 3.30 3.00 MUZ-GL1SNA-U1 Mis-Splits 12,000 21.600 20.50 13.4 11.20 3.77 2.73 MUZ-GLSNA-U1 MSZ-GL24NA-U1 Mini-Splits 12,000 14,400 20.50 12.5 10.00 3.46 2.65 MUZ-GETSNA- MSZ-GETSNA-8 Mini-Splits 12,000 14,400 20.5 12.5 10.0 3.61 2.87 MUZ-GETSNA-1 MSZ-GETSNA-8 Mini-Splits 17,200 21,600 19.2 10.5 10.0 3.32 2.71 MUZ-GETSNA-1 MSZ-GETSNA-8 Mini-Splits 17,200 21,600 19.2 10.5 10.0 3.46 2.64 <td< td=""><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td></td<>					,					
MUZ-GL12NA-U1 MSZ-GL12NA-U1 Mini-Splits 12,000 14,400 23.10 13.0 12.50 3.84 3.13 MUZ-GL15NA-U1 MSZ-GL15NA-U1 Mini-Splits 14,000 21.60 13.0 11.70 3.30 3.00 MUZ-GL15NA-U1 MSZ-GL24NA-U1 Mini-Splits 18,000 21.600 20.50 13.4 11.20 3.77 2.73 MUZ-GL24NA-U1 MSZ-GL24NA-U1 Mini-Splits 22,400 27,600 20.50 12.5 10.00 3.46 2.65 MUZ-GE12NA MSZ-GE09NA-8 Mini-Splits 12,000 14,400 20.5 12.5 10.0 3.61 2.87 MUZ-GE12NA MSZ-GE13NA-8 Mini-Splits 17,200 21.600 19.2 10.5 10.0 3.30 2.88 MUZ-GE12NA-2 MSZ-GE13NA-8 Mini-Splits 12,000 14,400 22.7 12.5 11.0 4.20 2.76 MUZ-GE12NA-2 MSZ-GE13NA-8 Mini-Splits 12,000 10,900 23.2 13.6			· · · · · · · · · · · · · · · · · · ·		,		÷			
MUZ-GL15NA-U1 Mini-Splits 14,000 18,000 21.60 13.0 11.70 3.30 3.00 MUZ-GL18NA-U1 MSZ-GL2ANA-U1 Mini-Splits 18,000 21.600 20.50 13.4 11.20 3.77 2.73 MUZ-GL4NA-U1 MSZ-GL2ANA-U1 Mini-Splits 22,400 27,600 20.50 12.5 10.00 3.46 2.65 MUZ-GE12NA MSZ-GE2NA-8 Mini-Splits 12,000 14,400 20.5 12.5 10.0 3.61 2.87 MUZ-GE18NA-1 MSZ-GE2ANA-8 Mini-Splits 17,200 21,600 19.2 10.5 10.0 3.30 2.88 MUZ-GE18NA-1 MSZ-GE2ANA Mini-Splits 12,200 14,400 22.5 10.0 3.34 2.71 MUZ-GE18NA-2 MSZ-GE2ANA-8 Mini-Splits 12,000 14,400 27.7 12.5 11.4 3.61 2.87 MUZ-GE12NA-2 MSZ-GE12NA-8 Mini-Splits 14,000 18,000 12.0 8.50 3.55 2.80<			· · · · · · · · · · · · · · · · · · ·	,	,					
MUZ-GL18NA-U1 Mini-Splits 18,000 21,600 20.50 13.4 11.20 3.77 2.73 MUZ-GL2ANA-U1 Mis-Splits 22,400 27,600 20.50 12.5 10.00 3.46 2.65 MUZ-GE09NA MSZ-GE09NA-8 Mini-Splits 9,000 10,900 21.0 13.6 10.0 4.20 2.76 MUZ-GE12NA MSZ-GE12NA-8 Mini-Splits 12,000 14,400 20.5 12.5 10.0 3.61 2.87 MUZ-GE18NA-1 MSZ-GE18NA-8 Mini-Splits 17,200 21,600 19.2 10.5 10.0 3.33 2.71 MUZ-GE18NA-1 MSZ-GE09NA-8 Mini-Splits 22,500 27,600 19.0 12.5 10.0 3.46 2.66 MUZ-GE12NA-2 MSZ-GE09NA-8 Mini-Splits 12,000 14,400 22.7 12.5 11.4 3.61 2.87 MUZ-GE12NA-2 MSZ-GE12NA-8 Mini-Splits 12,000 14,400 20.85 3.55 2.88 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
MUZ-GL24NA-U1 Mini-Splits 22,400 27,600 20.50 12.5 10.00 3.46 2.65 MUZ-GE09NA MSZ-GE09NA-8 Mini-Splits 9,000 10,900 21.0 13.6 10.0 4.20 2.76 MUZ-GE15NA-1 MSZ-GE15NA-8 Mini-Splits 12,000 14,400 20.5 12.5 10.0 3.61 2.87 MUZ-GE15NA-1 MSZ-GE15NA-8 Mini-Splits 17.200 21,600 19.2 10.5 10.0 3.33 2.71 MUZ-GE18NA-1 MSZ-GE09NA-8 Mini-Splits 17.200 21,600 19.2 10.5 10.0 3.33 2.71 MUZ-GE19NA-2 MSZ-GE09NA-8 Mini-Splits 22,500 27,600 19.0 12.5 10.0 3.46 2.64 MUZ-GE19NA-2 MSZ-GE19NA-8 Mini-Splits 12,000 14,400 22.7 12.5 11.4 3.61 2.87 MUZ-GE15NA-2 MSZ-H019NA*** Mini-Splits 12,000 18.00 12.0 8.50 3.61			· · · · · · · · · · · · · · · · · · ·	,	,					
MUZ-GE09NA MSZ-GE09NA-8 Mini-Splits 9,000 10,900 21.0 13.6 10.0 4.20 2.76 MUZ-GE12NA MSZ-GE12NA-8 Mini-Splits 12,000 14,400 20.5 12.5 10.0 3.61 2.87 MUZ-GE18NA-1 MSZ-GE18NA-8 Mini-Splits 14,000 18,000 21.0 13.0 10.0 3.30 2.88 MUZ-GE18NA-1 MSZ-GE18NA-8 Mini-Splits 17.200 21,600 19.2 10.5 10.0 3.33 2.71 MUZ-GE18NA-1 MSZ-GE18NA-8 Mini-Splits 22,500 27,600 19.0 12.5 10.0 3.46 2.64 MUZ-GE12NA-2 MSZ-GE15NA-8 Mini-Splits 12,000 14,400 22.7 12.5 11.4 3.61 2.87 MUZ-GE15NA-2 MSZ-GE15NA-8 Mini-Splits 14,000 18,000 21.6 13.0 11.2 3.30 2.88 MUZ-HM09NA2*** MSZ-HM12NA*** Mini-Splits 14,000 18,000 18.00 12.			· · · · · · · · · · · · · · · · · · ·							
MUZ-GE12NA MSZ-GE12NA-8 Mini-Splits 12,000 14,400 20.5 12.5 10.0 3.61 2.87 MUZ-GE15NA-1 MSZ-GE15NA-8 Mini-Splits 14,000 18,000 21.0 13.0 10.0 3.30 2.88 MUZ-GE18NA-1 MSZ-GE18NA-8 Mini-Splits 17,00 21,600 19.2 10.5 10.0 3.33 2.71 MUZ-GE24NA MSZ-GE24NA MSZ-GE09NA-2 MSZ-GE09NA-8 Mini-Splits 9,000 10,900 23.2 13.6 11.0 4.20 2.76 MUZ-GE12NA-2 MSZ-GE12NA-8 Mini-Splits 12,000 14,400 22.7 12.5 11.4 3.61 2.87 MUZ-GE15NA-2 MSZ-GE15NA-8 Mini-Splits 14,000 18,000 21.6 13.0 11.2 3.30 2.88 MUZ-HM09NA*** MSZ-HM12NA*** Mini-Splits 12,000 12.00 18.00 12.0 8.50 3.61 2.76 MUZ-HM12NA2*** MSZ-HM12NA*** Mini-Splits 17,200					,					
MUZ-GE15NA-1 MSZ-GE15NA-8 Mini-Splits 14,000 18,000 21.0 13.0 10.0 3.30 2.88 MUZ-GE18NA-1 MSZ-GE18NA-8 Mini-Splits 17,200 21,600 19.2 10.5 10.0 3.33 2.71 MUZ-GE24NA MSZ-GE24NA Mini-Splits 22,500 27,600 19.0 12.5 10.0 3.46 2.64 MUZ-GE12NA-2 MSZ-GE12NA-8 Mini-Splits 12,000 14,400 22.7 12.5 11.4 3.61 2.87 MUZ-GE15NA-2 MSZ-GE15NA-8 Mini-Splits 14,000 18,000 21.6 13.0 11.2 3.30 2.88 MUZ-HM09NA2*** MSZ-HM12NA*** Mini-Splits 12,000 12.00 18.00 12.0 8.50 3.55 2.80 MUZ-HM15NA2*** MSZ-HM12NA*** Mini-Splits 12,000 18.00 12.0 8.50 3.30 2.55 MUZ-HM15NA2*** MSZ-HM12NA*** Mini-Splits 17,200 18,000 18.0 10.5 <t< td=""><td></td><td></td><td>· · ·</td><td>,</td><td>,</td><td></td><td></td><td></td><td></td><td></td></t<>			· · ·	,	,					
MUZ-GE18NA-1 MSZ-GE18NA-8 Mini-Splits 17,200 21,600 19.2 10.5 10.0 3.33 2.71 MUZ-GE24NA MSZ-GE24NA Mini-Splits 22,500 27,600 19.0 12.5 10.0 3.46 2.64 MUZ-GE09NA-2 MSZ-GE09NA-8 Mini-Splits 9,000 10,900 23.2 13.6 11.0 4.20 2.76 MUZ-GE12NA-2 MSZ-GE15NA-8 Mini-Splits 12,000 14,400 22.7 12.5 11.4 3.61 2.87 MUZ-GE15NA-2 MSZ-GE15NA-8 Mini-Splits 14,000 18,000 21.6 13.0 11.2 3.30 2.88 MUZ-HM09NA*** MSZ-HM09NA*** Mini-Splits 12,000 18.00 12.0 8.50 3.61 2.78 MUZ-HM12NA*** MSZ-HM12NA*** Mini-Splits 12,000 18.00 10.0 8.50 3.30 2.55 MUZ-HM24NA*** Mini-Splits 17,200 18.00 18.0 10.0 8.50 3.32 2.59					,					
MUZ-GE24NA MSZ-GE24NA Mini-Splits 22,500 27,600 19.0 12.5 10.0 3.46 2.64 MUZ-GE09NA-2 MSZ-GE09NA-8 Mini-Splits 9,000 10,900 23.2 13.6 11.0 4.20 2.76 MUZ-GE12NA-2 MSZ-GE12NA-8 Mini-Splits 12,000 14,400 22.7 12.5 11.4 3.61 2.87 MUZ-GE15NA-2 MSZ-GE15NA-8 Mini-Splits 14,000 18,000 21.6 13.0 11.2 3.30 2.88 MUZ-HM09NA2*** MSZ-HM09NA*** Mini-Splits 9,000 10,900 18.00 12.0 8.50 3.55 2.80 MUZ-HM12NA2*** MSZ-HM12NA*** Mini-Splits 14,000 18,000 18.00 12.0 8.50 3.30 2.55 MUZ-HM18NA2*** MSZ-HM18NA*** Mini-Splits 17,200 18,000 18.00 10.5 8.50 3.32 2.59 MUZ-HM2NA2*** MSZ-HE18NA Mini-Splits 12,000 12,00 18.00 <			· · · · · · · · · · · · · · · · · · ·							
MUZ-GE09NA-2 MSZ-GE09NA-8 Mini-Splits 9,000 10,900 23.2 13.6 11.0 4.20 2.76 MUZ-GE12NA-2 MSZ-GE12NA-8 Mini-Splits 12,000 14,400 22.7 12.5 11.4 3.61 2.87 MUZ-GE15NA-2 MSZ-GE15NA-8 Mini-Splits 14,000 18,000 21.6 13.0 11.2 3.30 2.88 MUZ-HM09NA2*** MSZ-HM09NA*** Mini-Splits 9,000 10,900 18.00 12.0 8.50 3.61 2.78 MUZ-HM15NA2*** MSZ-HM15NA*** Mini-Splits 12,000 18.00 12.0 8.50 3.61 2.78 MUZ-HM15NA2*** MSZ-HM15NA*** Mini-Splits 17,200 18,000 18.00 10.5 8.50 3.32 2.55 MUZ-HM24NA2*** MSZ-HM24NA*** Mini-Splits 22,400 26,000 18.00 10.5 8.50 3.35 2.36 MUZ-HE12NA MSZ-HE15NA Mini-Splits 9,000 10,900 18.0 9.9			· · · · · · · · · · · · · · · · · · ·							
MUZ-GE12NA-2 MSZ-GE12NA-8 Mini-Splits 12,000 14,400 22.7 12.5 11.4 3.61 2.87 MUZ-GE15NA-2 MSZ-GE15NA-8 Mini-Splits 14,000 18,000 21.6 13.0 11.2 3.30 2.88 MUZ-HM09NA2*** MSZ-HM09NA*** Mini-Splits 9,000 10,900 18.00 12.0 8.50 3.55 2.80 MUZ-HM12NA2*** MSZ-HM12NA*** Mini-Splits 12,000 12.0 8.50 3.61 2.78 MUZ-HM15NA2*** MSZ-HM12NA*** Mini-Splits 12,000 18.00 12.0 8.50 3.30 2.55 MUZ-HM18NA2*** MSZ-HM18NA*** Mini-Splits 17,200 18,000 18.00 10.5 8.50 3.32 2.59 MUZ-HM2NA2*** MSZ-HE09NA Mini-Splits 9,000 10,900 18.00 10.5 8.50 3.61 2.87 MUZ-HE12NA MSZ-HE09NA Mini-Splits 12,000 12.00 8.5 3.61 2.87 MU			;							
MUZ-GE15NA-2 MSZ-GE15NA-8 Mini-Splits 14,000 18,000 21.6 13.0 11.2 3.30 2.88 MUZ-HM09NA2*** MSZ-HM09NA*** Mini-Splits 9,000 10,900 18.00 12.0 8.50 3.55 2.80 MUZ-HM12NA2*** MSZ-HM12NA*** Mini-Splits 12,000 12,200 18.00 9.9 8.50 3.61 2.78 MUZ-HM15NA2*** MSZ-HM15NA*** Mini-Splits 14,000 18,000 18.00 12.0 8.50 3.30 2.55 MUZ-HM18NA2*** MSZ-HM18NA*** Mini-Splits 17,200 18,000 18.00 10.5 8.50 3.32 2.59 MUZ-HE09NA MSZ-HE09NA Mini-Splits 17,200 18,000 18.00 12.0 8.5 3.55 2.60 MUZ-HE12NA MSZ-HE09NA Mini-Splits 12,000 12,00 18.0 12.0 8.5 3.61 2.87 MUZ-HE12NA MSZ-HE09NA Mini-Splits 12,000 18.00 18.0 12.			· · · · · · · · · · · · · · · · · · ·		,					
MUZ-HM09NA2*** MSZ-HM09NA*** Mini-Splits 9,000 10,900 18.00 12.0 8.50 3.55 2.80 MUZ-HM12NA2*** MSZ-HM12NA*** Mini-Splits 12,000 12,200 18.00 9.9 8.50 3.61 2.78 MUZ-HM15NA2*** MSZ-HM15NA*** Mini-Splits 14,000 18,000 18.00 12.0 8.50 3.30 2.55 MUZ-HM15NA2*** MSZ-HM15NA*** Mini-Splits 17,200 18,000 18.00 10.5 8.50 3.32 2.59 MUZ-HM24NA2*** MSZ-HM18NA*** Mini-Splits 17,200 18,000 18.00 10.5 8.50 3.32 2.59 MUZ-HE09NA MSZ-HM24NA*** Mini-Splits 17,200 18,000 18.00 18.0 12.0 8.5 3.61 2.36 MUZ-HE12NA MSZ-HE12NA Mini-Splits 12,000 12,200 18.0 9.9 8.5 3.61 2.87 MUZ-HE12NA MSZ-HE12NA Mini-Splits 12,000 18,000		1								
MUZ-HM12NA2*** MSZ-HM12NA*** Mini-Splits 12,000 12,200 18.00 9.9 8.50 3.61 2.78 MUZ-HM15NA2*** MSZ-HM15NA*** Mini-Splits 14,000 18,000 18.00 12.0 8.50 3.30 2.55 MUZ-HM18NA2*** MSZ-HM18NA*** Mini-Splits 17,200 18,000 18.00 10.5 8.50 3.32 2.59 MUZ-HM24NA2*** MSZ-HM18NA*** Mini-Splits 22,400 26,000 18.00 8.6 8.50 3.05 2.36 MUZ-HE09NA MSZ-HE09NA Mini-Splits 9,000 10,900 18.0 12.0 8.5 3.61 2.87 MUZ-HE12NA MSZ-HE12NA Mini-Splits 12,000 12.00 18.0 9.9 8.5 3.61 2.87 MUZ-HE12NA MSZ-HE12NA Mini-Splits 12,000 18.00 18.0 12.0 8.5 3.61 2.87 MUZ-HE12NA MSZ-HE12NA Mini-Splits 17,200 18,000 18.0 10.5			· · · · · · · · · · · · · · · · · · ·			1	÷		1	
MUZ-HM15NA2***MSZ-HM15NA***Mini-Splits14,00018,00018.0012.08.503.302.55MUZ-HM18NA2***MSZ-HM18NA***Mini-Splits17,20018,00018.0010.58.503.322.59MUZ-HM24NA2***MSZ-HM24NA***Mini-Splits22,40026,00018.008.68.503.052.36MUZ-HE09NAMSZ-HE09NAMini-Splits9,00010,90018.012.08.53.552.76MUZ-HE12NAMSZ-HE12NAMini-Splits12,00012,20018.09.98.53.612.87MUZ-HE15NAMSZ-HE15NAMini-Splits14,00018,00018.012.08.53.302.81MUZ-HE18NAMSZ-HE15NAMini-Splits17,20018,00018.010.58.53.322.71MUZ-HE18NAMSZ-HE18NAMini-Splits17,20018,00018.010.58.53.322.71MUZ-HE24NAMSZ-HE24NAMini-Splits22,50026,60018.08.68.53.452.64MUZ-D30NA-1MSZ-D30NA-8Mini-Splits30,60032,60014.58.08.22.842.33MUZ-D36NA-1MSZ-D36NA-8Mini-Splits33,20035,20014.57.68.22.692.23FLOOR-MOUNTED HEAT PUMPMUFZ-KJ09NAHZMFZ-KJ09NAMini-Splits9,00011,00028.2015.8013.004.302.71MUFZ-KJ12NAHZ<	MUZ-HM12NA2***		· · · · · · · · · · · · · · · · · · ·		,					
MUZ-HM18NA2***MSZ-HM18NA***Mini-Splits17,20018,00018.0010.58.503.322.59MUZ-HM24NA2***MSZ-HM24NA***Mini-Splits22,40026,00018.008.68.503.052.36MUZ-HE09NAMSZ-HE09NAMini-Splits9,00010,90018.012.08.53.552.76MUZ-HE12NAMSZ-HE12NAMini-Splits12,00012,20018.09.98.53.612.87MUZ-HE15NAMSZ-HE15NAMini-Splits14,00018,00018.012.08.53.302.81MUZ-HE18NAMSZ-HE18NAMini-Splits17,20018,00018.010.58.53.322.71MUZ-HE24NAMSZ-HE24NAMini-Splits17,20018,00018.010.58.53.322.71MUZ-B30NA-1MSZ-D30NA-8Mini-Splits22,50026,60018.08.68.53.452.64MUZ-D30NA-1MSZ-D30NA-8Mini-Splits30,60032,60014.58.08.22.842.33MUZ-D36NA-1MSZ-D36NA-8Mini-Splits33,20035,20014.57.68.22.692.23FLOOR-MOUNTED HEAT PUMPMUFZ-KJ09NAHZMFZ-KJ09NAMini-Splits9,00011,00028.2015.8013.004.302.71MUFZ-KJ12NAHZMFZ-KJ12NAMini-Splits12,00013,00025.5013.6012.004.202.77MUFZ-KJ15NAHZ<	-		· · · · · · · · · · · · · · · · · · ·	,	,		0			
MUZ-HM24NA2***MSZ-HM24NA***Mini-Splits22,40026,00018.008.68.503.052.36MUZ-HE09NAMSZ-HE09NAMini-Splits9,00010,90018.012.08.53.552.76MUZ-HE12NAMSZ-HE12NAMini-Splits12,00012,20018.09.98.53.612.87MUZ-HE15NAMSZ-HE15NAMini-Splits14,00018,00018.012.08.53.302.81MUZ-HE18NAMSZ-HE18NAMini-Splits17,20018,00018.010.58.53.322.71MUZ-HE24NAMSZ-HE24NAMini-Splits22,50026,60018.08.68.53.452.64MUZ-D30NA-1MSZ-D30NA-8Mini-Splits30,60032,60014.58.08.22.842.33MUZ-D36NA-1MSZ-D36NA-8Mini-Splits33,20035,20014.57.68.22.692.23FLOOR-MOUNTED HEAT PUMPMUFZ-KJ09NAHZMFZ-KJ09NAMini-Splits9,00011,00028.2015.8013.004.302.71MUFZ-KJ12NAHZMFZ-KJ12NAMini-Splits12,00013,00025.5013.6012.004.202.77MUFZ-KJ15NAHZMFZ-KJ15NAMini-Splits15,00018,00021.8013.5011.603.702.71	MUZ-HM18NA2***									
MUZ-HE09NAMSZ-HE09NAMini-Splits9,00010,90018.012.08.53.552.76MUZ-HE12NAMSZ-HE12NAMini-Splits12,00012,20018.09.98.53.612.87MUZ-HE15NAMSZ-HE15NAMini-Splits14,00018,00018.012.08.53.302.81MUZ-HE18NAMSZ-HE18NAMini-Splits17,20018,00018.010.58.53.322.71MUZ-HE24NAMSZ-HE24NAMini-Splits22,50026,60018.08.68.53.452.64MUZ-D30NA-1MSZ-D30NA-8Mini-Splits30,60032,60014.58.08.22.842.33MUZ-D36NA-1MSZ-D36NA-8Mini-Splits33,20035,20014.57.68.22.692.23FLOOR-MOUNTED HEAT PUMPMUFZ-KJ09NAHZMFZ-KJ09NAMini-Splits9,00011,00028.2015.8013.004.302.71MUFZ-KJ12NAHZMFZ-KJ12NAMini-Splits12,00013,00025.5013.6012.004.202.77MUFZ-KJ15NAHZMFZ-KJ15NAMini-Splits15,00018,00021.8013.5011.603.702.71	MUZ-HM24NA2***						·			
MUZ-HE12NAMSZ-HE12NAMini-Splits12,00012,20018.09.98.53.612.87MUZ-HE15NAMSZ-HE15NAMini-Splits14,00018,00018.012.08.53.302.81MUZ-HE18NAMSZ-HE18NAMini-Splits17,20018,00018.010.58.53.322.71MUZ-HE24NAMSZ-HE24NAMini-Splits22,50026,60018.08.68.53.452.64MUZ-D30NA-1MSZ-D30NA-8Mini-Splits30,60032,60014.58.08.22.842.33MUZ-D36NA-1MSZ-D36NA-8Mini-Splits33,20035,20014.57.68.22.692.23FLOOR-MOUNTED HEAT PUMPMUFZ-KJ09NAHZMFZ-KJ09NAMini-Splits9,00011,00028.2015.8013.004.302.71MUFZ-KJ12NAHZMFZ-KJ12NAMini-Splits12,00013,00025.5013.6012.004.202.77MUFZ-KJ15NAHZMFZ-KJ15NAMini-Splits15,00018,00021.8013.5011.603.702.71	MUZ-HE09NA						÷			
MUZ-HE15NA MSZ-HE15NA Mini-Splits 14,000 18,000 18.0 12.0 8.5 3.30 2.81 MUZ-HE18NA MSZ-HE18NA Mini-Splits 17,200 18,000 18.0 10.5 8.5 3.32 2.71 MUZ-HE24NA MSZ-HE24NA Mini-Splits 22,500 26,600 18.0 8.6 8.5 3.45 2.64 MUZ-D30NA-1 MSZ-D30NA-8 Mini-Splits 30,600 32,600 14.5 8.0 8.2 2.84 2.33 MUZ-D36NA-1 MSZ-D36NA-8 Mini-Splits 30,600 32,600 14.5 7.6 8.2 2.69 2.23 FLOOR-MOUNTED HEAT PUMP MUFZ-KJ09NAHZ MFZ-KJ09NA Mini-Splits 9,000 11,000 28.20 15.80 13.00 4.30 2.71 MUFZ-KJ12NAHZ MFZ-KJ12NA Mini-Splits 12,000 13,000 25.50 13.60 12.00 4.20 2.77 MUFZ-KJ15NAHZ MFZ-KJ15NA Mini-Splits 15,000 <t< td=""><td>MUZ-HE12NA</td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td>÷</td><td></td><td></td><td></td></t<>	MUZ-HE12NA		· · · · · · · · · · · · · · · · · · ·				÷			
MUZ-HE18NA MSZ-HE18NA Mini-Splits 17,200 18,000 18.0 10.5 8.5 3.32 2.71 MUZ-HE24NA MSZ-HE24NA Mini-Splits 22,500 26,600 18.0 8.6 8.5 3.45 2.64 MUZ-D30NA-1 MSZ-D30NA-8 Mini-Splits 30,600 32,600 14.5 8.0 8.2 2.84 2.33 MUZ-D36NA-1 MSZ-D36NA-8 Mini-Splits 33,200 35,200 14.5 7.6 8.2 2.69 2.23 FLOOR-MOUNTED HEAT PUMP MUFZ-KJ09NAHZ MFZ-KJ09NA Mini-Splits 9,000 11,000 28.20 15.80 13.00 4.30 2.71 MUFZ-KJ12NAHZ MFZ-KJ12NA Mini-Splits 12,000 13,000 25.50 13.60 12.00 4.20 2.77 MUFZ-KJ15NAHZ MFZ-KJ15NA Mini-Splits 15,000 18,000 21.80 13.50 11.60 3.70 2.71	MUZ-HE15NA		· · · · · · · · · · · · · · · · · · ·	,						
MUZ-HE24NA MSZ-HE24NA Mini-Splits 22,500 26,600 18.0 8.6 8.5 3.45 2.64 MUZ-D30NA-1 MSZ-D30NA-8 Mini-Splits 30,600 32,600 14.5 8.0 8.2 2.84 2.33 MUZ-D36NA-1 MSZ-D30NA-8 Mini-Splits 33,200 35,200 14.5 7.6 8.2 2.69 2.23 FLOOR-MOUNTED HEAT PUMP MUFZ-KJ09NAHZ MFZ-KJ09NA Mini-Splits 9,000 11,000 28.20 15.80 13.00 4.30 2.71 MUFZ-KJ12NAHZ MFZ-KJ12NA Mini-Splits 12,000 13,000 25.50 13.60 12.00 4.20 2.77 MUFZ-KJ15NAHZ MFZ-KJ15NA Mini-Splits 15,000 18,000 21.80 13.50 11.60 3.70 2.71	MUZ-HE18NA									
MUZ-D30NA-1 MSZ-D30NA-8 Mini-Splits 30,600 32,600 14.5 8.0 8.2 2.84 2.33 MUZ-D36NA-1 MSZ-D36NA-8 Mini-Splits 33,200 35,200 14.5 7.6 8.2 2.69 2.23 FLOOR-MOUNTED HEAT PUMP MUFZ-KJ09NAHZ MFZ-KJ09NA Mini-Splits 9,000 11,000 28.20 15.80 13.00 4.30 2.71 MUFZ-KJ12NAHZ MFZ-KJ12NA Mini-Splits 12,000 13,000 25.50 13.60 12.00 4.20 2.77 MUFZ-KJ15NAHZ MFZ-KJ15NA Mini-Splits 15,000 18,000 21.80 13.50 11.60 3.70 2.71	MUZ-HE24NA		· · · ·		,	1				<u> </u>
MUZ-D36NA-1 MSZ-D36NA-8 Mini-Splits 33,200 35,200 14.5 7.6 8.2 2.69 2.23 FLOOR-MOUNTED HEAT PUMP MUFZ-KJ09NAHZ MFZ-KJ09NA Mini-Splits 9,000 11,000 28.20 15.80 13.00 4.30 2.71 MUFZ-KJ12NAHZ MFZ-KJ12NA Mini-Splits 12,000 13,000 25.50 13.60 12.00 4.20 2.77 MUFZ-KJ15NAHZ MFZ-KJ15NA Mini-Splits 15,000 18,000 21.80 13.50 11.60 3.70 2.71	MUZ-D30NA-1		· · · · · · · · · · · · · · · · · · ·				0			
FLOOR-MOUNTED HEAT PUMP MUFZ-KJ09NAHZ MFZ-KJ09NA Mini-Splits 9,000 11,000 28.20 15.80 13.00 4.30 2.71 MUFZ-KJ12NAHZ MFZ-KJ12NA Mini-Splits 12,000 13,000 25.50 13.60 12.00 4.20 2.77 MUFZ-KJ15NAHZ MFZ-KJ15NA Mini-Splits 15,000 18,000 21.80 13.50 11.60 3.70 2.71			· · · · · · · · · · · · · · · · · · ·		,		·			<u> </u>
MUFZ-KJ09NAHZMFZ-KJ09NAMini-Splits9,00011,00028.2015.8013.004.302.71MUFZ-KJ12NAHZMFZ-KJ12NAMini-Splits12,00013,00025.5013.6012.004.202.77MUFZ-KJ15NAHZMFZ-KJ15NAMini-Splits15,00018,00021.8013.5011.603.702.71									-	
MUFZ-KJ12NAHZ MFZ-KJ12NA Mini-Splits 12,000 13,000 25.50 13.60 12.00 4.20 2.77 MUFZ-KJ15NAHZ MFZ-KJ15NA Mini-Splits 15,000 18,000 21.80 13.50 11.60 3.70 2.71	MUFZ-KJ09NAHZ	MFZ-KJ09NA	,,,,,,,,			28.20	15.80	13.00	4.30	2.71
MUFZ-KJ15NAHZ MFZ-KJ15NA Mini-Splits 15,000 18,000 21.80 13.50 11.60 3.70 2.71	MUFZ-KJ12NAHZ		· · · · · · · · · · · · · · · · · · ·			-				
	MUFZ-KJ15NAHZ		· · · · · · · · · · · · · · · · · · ·						3.70	
	MUFZ-KJ18NAHZ	MFZ-KJ18NA	Mini-Splits	17,000	21,000	21.00	12.60	11.30	3.50	2.62

M-Series Efficiencies, cont.

SEZ HORIZONTAL-DUCTED HEAT PUMP SYSTEMS									
SUZ-KA09NA	SEZ-KD09NA4	Ducted	8,100	10,900	15.0	12.0	10.0	3.13	2.14
SUZ-KA12NA	SEZ-KD12NA4	Ducted	11,500	13,600	16.0	12.5	10.0	3.50	2.43
SUZ-KA15NA	SEZ-KD15NA4	Ducted	14,100	18,000	15.5	12.0	10.0	3.52	2.43
SUZ-KA18NA	SEZ-KD18NA4	Ducted	17,200	21,600	17.5	12.5	10.0	3.72	2.40
	SLZ CEILING-RECESSED HEAT PUMP SYSTEMS								
SUZ-KA09NA	SLZ-KA09NA	Mini-Splits	8,400	10,900	15.0	12.0	9.6	3.44	2.46
SUZ-KA12NA	SLZ-KA12NA	Mini-Splits	11,100	13,600	15.4	12.0	9.6	3.38	2.62
SUZ-KA15NA	SLZ-KA15NA	Mini-Splits	15,000	18,000	16.0	10.2	9.6	2.70	2.38

CERTIFIED or www.shridirectory.org Unitary Small AC AMPI Shandard 210/240 Centrasion applies only when the complete getters in face with Refer

COOLING & HEATING

1340 Satellite Boulevard. Suwanee, GA 30024 Toll Free: 800-433-4822 www.mehvac.com

FORM# MXZ Multi-Zone Efficiencies - 201602Ver2 Specifications are subject to change without notice.

PUBLIC HEARING

TOWN OF HENNIKER, NEW HAMPSHIRE

PUBLIC HEARING

Place: Henniker Community Center 57 Main Street Henniker, NH 03242

Tuesday, December 5, 2023 6:30 PM

Public Hearing

The Town of Henniker will hold a public hearing during the regularly scheduled Selectboard meeting on December 5, 2023, at 6:30pm at the Henniker Community Center, 57 Main Street under the provisions of RSA 31:95-b, II-IV to accept and appropriate unanticipated one-time State of New Hampshire HB 2 (SB 270) Highway Block Grant funding in the amount of \$46,960.09 for immediate infrastructure improvements.

Diane Kendall

From:

Sent: To: Subject: on behalf of Katherine Heck

Monday, November 6, 2023 3:35 PM

[NHGFOA] IMPORTANT State -Aid Update

IMPORTANT State Aid Update HB 2 (SB 270) Updated November 6, 2023

Certain provisions in <u>Chapter 79</u> (HB 2, Sections 520 and 521) provides \$20 million is one-time property tax relief through additional direct payments to cities and towns for immediate infrastructure improvements: an additional and \$10 million in municipal highway block grants and \$10 million for the repair and maintenance of municipally-owned bridges. This FAQ explains how this state aid will impact the local budget.

When can a municipality expect to receive these funds? The additional one-time lump-sum payment of highway block grant aid is expected to be disbursed by mid-November. The additional one-time lump-sum payment of bridge aid is expected to be disbursed in Late November – early December timeframe.

How can a municipality accept and expend these funds? The bill allows both categories of funds to be considered "unanticipated revenue." Therefore, a municipality may accept and expend the funds under the provisions of **RSA 31:95-b, II-IV**, whether or not a municipality has adopted that statute. For unanticipated money in the amount of \$10,000 or more, RSA 31:95-b requires the governing body to hold a public hearing on the action to be taken, with notice of the time, place and subject of the hearing published at least seven days before the hearing is held. For unanticipated money less than \$10,000, the governing body must post notice of the funds in the agenda and include notice in the minutes of the public meeting at which the money is discussed.

How much should my municipality expect to receive? The additional appropriations contained in HB 2 (SB270), while less than the amount of SB 401 from last session (\$36 million), still represent a significant state investment in local infrastructure. Assuming all variables remain the same, your municipality would receive approximately 33 percent of the prior year's one-time funding for Class IV and V roads and 27 percent of the one-time bridge payment received last year.

What is the municipal distribution formula for roads and bridges? Every municipality with a municipally-owned bridge will receive a share of the \$10 million allocated for the repair, maintenance, and construction in addition to any state or federal funds committed or available for bridge projects. No local match is required.

- *Highway Block Grants.* The \$10 million allocated for roads will follow the Department of Transportation "Apportionment A" formula used when calculating the annual highway block grant each municipality receives. Therefore, funds will be distributed among the municipalities based on their population in proportion to the entire state's population and the other half is disbursed based on a municipality's Class IV and V road mileage in proportion to the total statewide Class IV and V mileage.
- *Municipally-Owned Bridge Allocation.* The appropriation for bridges will be based on a similar 50/50 formula, where \$5 million will be distributed based on a municipality's deck area proportional to the total deck area for municipally-owned bridges, and \$5 million will be distribution based on a municipality's total share of the state population.

- What can this money be used for? HB 2 will provide funding with restricted uses, meaning that it may be used to supplement (not supplant) local budgets; The "supplement not supplant" provision requires that these funds must add to (supplement) and not replace (supplant) local budgeted funds when providing services that repair, maintain, and construct municipal bridges (bridge -aid); repair and maintain class IV and V roads or acquire the equipment necessary to maintain Class IV and V roads (additional highway block grant)including advancing sidewalk construction adjacent to a Class V Road.
 - o RSA 32:7, IV, provides that money from a state grant for a specific purpose is non-lapsing;
 - The amount of additional grant will *not* be reported as "Highway Block Grant Revenue" on the municipalities 2023 MS-434 Report of Revised Estimated Revenue;
 - As dedicated state grant funds with a specific purpose outlined in the law, the additional funds will not become part of the unassigned fund balance;
 - Cities and towns are encouraged to inquire of their accountant or auditing firm to determine the appropriate fund where the money will be placed until obligated and expended: and,
 - It is not recommended these funds be placed in a Capital Reserve Fund. That action requires the vote of the legislative body, and the road and bridge funds are already restricted in their eligible use and may not be redesigned.

NHMA will continue to provide updated information and guidance on HB 2 as it becomes available to us.

Questions?

Please contact NHMA at 603.224.7447 or

Respectfully, Katherine

Katherine Heck Government Finance Advisor <u>NH Municipal Association</u> 25 Triangle Park Drive Concord, NH 03301 Tel: (603) 224-7447 Email:

Federal Funding and Resources

NHMA's 82nd Annual Conference and Exhibition

Zap the Gap: How to Make Peace and Work Effectively in a Multigenerational World NHMA's 82nd Annual Conference and Exhibition November 15 & 16, 2023 DoubleTree by Hilton Manchester Downtown Hotel, Manchester, NH

You received this message because you are subscribed to the Google Groups "NHGFOA" group. To unsubscribe from this group and stop receiving emails from it, send an email to <u>nhgfoa-</u>

CONTINUED BUSINESS

PAST MEETING MINUTES

Disclaimer – The following are Draft Minutes, which could include errors and are subject to change upon approval of the Select Board.

Town of Henniker Board of Selectmen Meeting Tuesday November 21, 2023 6:15 PM Henniker Community Center

Members Present:	Chairman Kris Blomback, Selectman Neal Martin, Selectman Jeff Morse, Selectman Scott Osgood
Member's Excused:	Vice-Chairman Bill Marko
Town Administrator:	Diane Kendall
Recording Secretary:	Hank Bernstein
Guests:	See attached Sign-In Sheet

CALL TO ORDER/PLEDGE OF ALLEGIANCE

Chairman Kris Blomback opened the meeting with recitation of the Pledge of Allegiance and called the meeting to order at 6:15pm.

ANNOUNCEMENTS

Item #1 - The Henniker Community Center has been listed in the New Hampshire State Register of Historic Places by the Division of Historical Resources, Department of Natural and Cultural Resources, on October 30, 2023.

The Board congratulated the Henniker Historical Society for acquiring this distinction.

CONSENT AGENDA

Item #2 - Chairman Blomback motioned to approve the Consent Agenda November 21, 2023, seconded by Selectman Martin. The motion passed, unanimously.

PUBLIC COMMENT #1

AJ Heinrich, of Snowshoe Rd, shared that the Perambulators will be putting their work on hold until the spring.

NEW BUSINESS

Item #3 - Fire Department EMPG Grant

TA Kendall gave background and introduced Joe Walsh. Mr. Walsh is the project leader on acquiring funding to replace the existing generator at the Emergency Operations Center. Henniker's EOC is the Fire/Rescue Department. Mr. Walsh is interested in applying for an Emergency Management Performance Grant that has a \$50,000 in kind match. To meet this match Mr. Walsh suggests replacing the bay doors and keypad locks. Discussion ensued. Selectman Martin moved to authorize the Town apply for EMPG funding and approve the Town Administrator as the authorized representative; Selectman Morse seconded. Motion carried unanimously.

Item #4 - Request to close Transfer Station at noon on Christmas eve

Christmas Eve falls on a Sunday and is not listed as a Holiday. The Transfer Station employees requested to close early that day. Discussion ensued. Selectman Martin suggested closing at 1 PM and making it a half day.

Disclaimer – The following are Draft Minutes, which could include errors and are subject to change upon approval of the Select Board.

TA Kendall believes they will be responsive to that. Selectman Martin moved to close the Transfer Station at 1 PM on December 24th, 2023; Selectman Morse seconded. Motion carried unanimously.

CONTINUED BUSINESS:

Item #5 - Fund Balance Policy – 3rd Reading

TA Kendall gave background. This is the third reading of the recommended policy for fund balance use and stabilization. At the last meeting the Board changed the retention range to between six and ten percent. That change has been made. Chairman Blomback moved to approve Policy III. 13 Financial Fund Balance Policy, seconded by Selectman Osgood. Motion carried unanimously.

Item #6 - Wastewater Warrant Article

The Town applied for funding for the Wastewater upgrades at the 2022 Town Meeting. Due to the lapse in time and reprioritization the town is seeking supplemental funding. The NH Clean Water State Revolving Fund is offering a bond of \$1,500,000 with \$425,000 principal forgiveness. Discussion ensued. **Chairman Blomback** moved to support the 2024 special warrant article for the issuance of \$1,500,000 in bonds for the purpose of supplemental upgrades to the wastewater treatment facility with the understanding that \$425,000 will be in principal forgiveness from the state revolving fund loan and further authorize the TA to find out the details and have wording vetted by town council and authorize the TA to sign on behalf of the board; Selectman Martin seconded. Motion carried unanimously.

Item #7 - 2024 Budget

Chairman Blomback noted that this item will be on the agenda going forward until budgets are finalized.

a) Request by CASA of New Hampshire to appropriate \$500 to Henniker's vulnerable children. Court Appointed Special Advocates sent a letter requesting a \$500 contribution. Discussion ensued. Selectman Martin requested information on the number of Henniker children this funding will support. No action taken at this time.

PAST MEETING MINUTES

Item #8 - Acceptance of Board of Selectmen public meeting minutes November 7, 2023, 5:45 PM Selectman Osgood moved to approve these minutes, seconded by Selectman Morse. Motion carried unanimously.

Item #9 - Acceptance of Board of Selectmen non-public meeting minutes November 7, 2023, 5:45 PM Chairman Blomback moved to approve these minutes, seconded by Selectman Osgood. Motion carried unanimously.

COMMUNICATIONS

Item #10 - Town Administrator Reprot TA Kendall reported on:

- Budgets
- Highway Block Grant
- Transfer Station Thanksgiving Closure

Item #11 - Correspondence

No remarks from the Board

Item #12 - Department Reports No remarks from the board

- The Communication Tower
- Fire Pond
- Solar Project

Disclaimer – The following are Draft Minutes, which could include errors and are subject to change upon approval of the Select Board.

Item #13 - Selectmen Reports

Chairman Blomback reported on the Police Facility Assessment Committee. Selectman Martin reported on the joint meeting with the Budget Advisory Committee. Selectman Morse reported on the Road Management Committee. Selectman Osgood had nothing to report.

PUBLIC COMMENT #2:

AJ Heinrich, of Snowshoe Rd, asked if the bond for Wastewater upgrades has funds designated for staffing. Mr. Heinrich expressed concern that without sufficient staffing in that department the equipment will not be properly cared for, and the current staff is already overworked.

ADJOURMENT

Chairman Blomback moved to adjourn at 7:05 PM, seconded by Selectman Martin. Motion carried unanimously.

Respectfully submitted,

Hank Bernstein Minute Taker Minutes Approved:

Meeting: BOARD OF SELECTMEN

Date: November 21, 2023

PLEASE PRINT

Name		Address					
AJ	HEINRICH	133	Snowstope Rd				
Vae	HEINRICH Walsh	179	Snowstope Rd Westight Hight RD.				
·							
			· · · · · · · · · · · · · · · · · · ·				
			8				
· <u> </u>							

Disclaimer – The following are Draft Minutes, which could include errors and are subject to change upon approval of the Select Board.

Town of Henniker Board of Selectmen Joint Meeting with Budget Advisory Committee Saturday, November 18th 2023, 8:30 AM Henniker Community Center

Members Present:	<i>Board of Selectmen:</i> Chairman Kris Blomback, Vice-Chairman Bill Marko, Selectman Neal Martin, Selectman Jeff Morse, Selectman Scott Osgood <i>Budget Advisory Committee:</i> Chairwoman Lori Marko, Vice-Chairwoman Heidi Aucoin, Jarrod Gleason, Luke Reynard
Member's Excused: Town Administrator: Finance Director: Recording Secretary:	Diane Kendall Sherry Bradstreet Hank Bernstein
Guests:	See attached Sign-In Sheet

CALL TO ORDER/PLEDGE OF ALLEGIANCE

Chairman Kris Blomback opened the meeting with recitation of the Pledge of Allegiance and called the meeting to order at 8:30am.

FIRE/RESCUE/EMERGENCY MANAGEMENT

Rescue Chief Greg Aucoin presented the Fire, Rescue, and Emergency Management Budgets. He discussed the importance of supporting the employees and noted that was the most crucial part of the budget.

WASTEWATER

Wastewater Superintendent Rich Slager presented the Wastewater Budget. He discussed the ongoing equipment repairs needed at the plant. The Board asked Supt. Slager to follow up with the water supply issues and investigate sludge disposal.

TUCKER FREE LIBRARY

Fran Tain and Lynn Piotrowicz presented the Tucker Free Library Budget. Discussion ensued. The Board requested an in-depth breakdown of the budget, showing more detail on revenues, wages, and trust funds. The Board also requested information on the trusts showing how the Town can and cannot expend them.

COMMUNITY CONCERTS

Concert Committee Chairwoman Ruth Zax presented the Community Concert Budget. She shared that the committee would like to add another concert the week of Labor Day. Discussion ensued.

TOWN CLERK/ELECTIONS/TAX COLLECTOR

Town Clerk / Tax Collector Debbie Aucoin presented the budgets for Town Clerk, Elections, and Tax Collector. She noted an increase in wages in anticipation of the four elections scheduled for 2024. TC/TX Aucoin also shared that the ballot machine will need to be replaced in 2024 and the potential for the ability pay tax bills online in 2024.

POLICE DEPARTMENT/ANIMAL CONTROL

Police Chief Matt French presented the Police Department Budget. He shared that they still short a full time employee but are hopeful to find another candidate.

<u>WELFARE</u>

Welfare Director Carol Conforti-Adams presented the Welfare Budget. She noted rent has increased but wages have not, creating more instances of people requesting rent assistance. Ms. Conforti-Adams shared that she focuses on case work and providing resources for those in need.

HIGHWAY/STREETS/LIGHTS

Highway Superintendent Leo Aucoin presented the budgets for Highway, Streets, and Lights. He noted that repairs are very expensive. Supt. Aucoin shared that he is interested in painting lines on the main roads in Town.

TRANSFER STATION/GOVERNMENT BUILDING/PARKS AND PROPERTY

Transfer Station Manager Marc Boisvert and Transfer Station Assistant Manager Matt Bumford presented the budgets for Transfer Station, Government Buildings, and Parks and Property. Previously these budgets were all combined under the Transfer Station but have been separated for the sake of transparency.

ATHLETICS

Chris Woodbury of the Athletics Budget. They kept the budget flat to last year's budget.

<u>CEMETERY</u>

Tim McComish, of the Cemetery Trustees, presented the Cemetery Budget. His biggest concern was three trees in the Plummer Cemetery and the extensive work it will take to remove them. Discussion ensued.

CONSERVATION

Mark Mitch, Cochair of the Conservation Commission presented the Conservation Budget. He also informed the Board of ongoing projects of the Conservation Commission.

EXECUTIVE

TA Kendall presented the Executive Budget. She discussed Cost of Living Adjustments and possible changes to the health insurance plan.

FINANCE

TA Kendall presented the Finance Budget. She explained the computer licensing and maintenance that was split out into other budgets.

TAX MAPS AND ASSESSING

TA Kendall presented the Tax Maps and Assessing Budgets. She discussed the contract with Avitar Associates and the letter they sent out about their cyclical data verification.

<u>LEGAL</u>

TA Kendall presented the Legal Budget. She shared that this portion is difficult to budget for, especially with ongoing litigation with Eversource.

CYBER SECRUITY

TA Kendall presented the Cyber Security Budget. She spoke highly of the service provided by Mirador IT, Henniker's contracted IT support company.

DRAFT

Disclaimer – The following are Draft Minutes, which could include errors and are subject to change upon approval of the Select Board.

BUILDING INSPECTOR/CODE ENFORCEMENT

TA Kendall presented the Building Inspector/ Code Enforcement Budget. She shared that revenue received from permits exceeded the cost of this budget in 2023.

HEALTH OFFICER

TA Kendall presented the Health Officer Budget. Chief Aucoin fills this role in addition to his other duties.

INSURANCE

TA Kendall presented the Insurance Budget. This covers items like Workers' Comp, General Liability, and Unemployment Insurance.

ANIMAL CONTROL

TA Kendall shared that there is currently nobody in the role of Animal Control.

PATRIOTIC PURPOSES

Fire Chief Jim Morse presented this budget at the Board of Selectman meeting of November 3.

CAP PROGRAM

TA Kendall presented the Cap Program Budget.

WHITE BIRCH

White Birch Executive Director Marc McMurphy presented this budget at the Board of Selectman meeting of November 3.

MUNICIPAL DUES

TA Kendall presented the Municipal Dues Budget.

DEBT SERVICE

FD Bradstreet presented the Debt Service Budget.

PLANNING AND ZONING

TA Kendall presented the Planning and Zoning Budget. This budget is dependent on applications.

COMMUNITY ORGANIZATIONS

TA Kendall presented the Community Organizations Budget.

TA Kendall noted that the Budget Hearing will take place on February 6th, and that budgets should be finalized on January 30th.

ADJOURNMENT

Selectman Marko moved to adjourn at 3:08 PM, seconded by Selectman Martin. Motion carried unanimously.

Respectfully submitted,

Hank Bernstein Minute Taker Minutes Approved:

Meeting: BOARD OF SELECTMEN & BUDGET ADVISORY COMMITTEE JOINT MEETING

Date: November 18, 2023

PLEASE PRINT

Name	Address
Sherry Bradstreet	F.hance bept
CHARLA Freeman	Wusteraut
hack slagor	Wastenlafa
Lynn Piotomicz	Tucken Free
Joevetrick	
Frantain	
Anne Cretti	
Debleveutzer	
Ruth Zax	247 Hall AVE
H. Michelle Darderenn	. Unniker Police
+ofc Frankie Rumsdell	· panna mac
Chief Motthew Freuer	APD
Chris Woodbury	Athletics-
Vin McComish	Cen.

TOWN ADMINISTRATOR REPORT

CORRESPONDENCE

COUNTY OF MERRIMACK 333 DANIEL WEBSTER HIGHWAY, SUITE 2 BOSCAWEN, NEW HAMPSHIRE 03303-2415 (603) 796-6800 FAX: (603) 796-6840 www.merrimackcounty.net

COMMISSIONERS

TARA REARDON, Chair, Concord STUART D. TRACHY, Vice Chair, Franklin DAVID M. LOVLIEN JR., Clerk, Pembroke

November 27th, 2023

TO: Members of the Merrimack County Delegation Chair, Merrimack County Select Boards Honorable James Bouley, Mayor City of Concord Honorable David M. Scanlan, Secretary of State Honorable Jo Brown, Mayor City of Franklin

Dear Ladies and Gentlemen,

In compliance with NH RSA 24:21-a, we are providing you with a copy of the proposed Merrimack County budget for calendar year 2024.

The proposed \$102,592,397 budget includes a 9.0% increase in tax revenue, a \$4,254,825 increase. Our average increase from 2020 to the 2023 budget was only 0.67%. The 2024 budget reflects an overall increase of general fund expenses of 8.75%, or \$8,220,612, above the 2023 budget. The 2024 budget utilizes \$4,226,285 of fund balance to balance.

Nursing Home revenue is projected to increase by \$4,788,085 and our alternative care reimbursement and the Department of Corrections revenues are decreasing by \$942,000 in aggregate. Health insurance rates have increased by roughly 7.72% for a \$539,959 increase. Combined Alternative Care and Nursing Home Care costs are expected to increase by \$367,787, 2.32%. Overall, personnel costs are set to increase by 3.97% or \$1,513,022 & attributable benefits by 2.61% or \$466,604.

The 2024 budget does not include any reimbursed portions of grant funding, a change from prior years. We are still spending down our American Rescue Plan Act (ARPA) monies. The largest projects in process are updates and repairs to our Waste Water Treatment Plant as well as an investment into a solar array.

We look forward to working with you at upcoming budget subcommittee meetings and throughout the new fiscal year to pass a responsible budget to meet the needs of Merrimack County.

Respectfully submitted,

ardon, Chair

David M. Lovlien Jr., Clerk

COUNTY ADMINISTRATOR ROSS L. CUNNINGHAM

2024 MS-46

Proposed Budget and Estimate of Revenue Merrimack County

For the period beginning January 1, 2024 and ending December 31, 2024

Form Due Date: September 1

County commissioners should use this form to prepare the county budget for delivery to each member of the county convention who will be in office on the date of the appropriation vote and to the chairman of the board of selectmen or the mayor for each city/town within the county, and to the Secretary of State as required by RSA 24:21-a. The completed form must be submitted to the Department of Revenue Administration by September 1 per RSA 21-J:34.

GOVERNING BODY CERTIFICATION

Under penalties of perjury, I declare that I have examined the information contained in this form and to the best of my belief it is true, correct and complete.

Name	Position	Signature
Tara Reardon	Commissioner	Ch
Stuart D. Trachy	Commissioner	Strant D. Verach
David M. Lovlien	Commissioner	Qual horno A.

This form must be signed, scanned, and uploaded to the Municipal Tax Rate Setting Portal: https://www.proptax.org/

> For assistance please contact: NH DRA Municipal and Property Division (603) 230-5090 http://www.revenue.nh.gov/mun-prop/

Appropriations

2024 MS-46

Account	Purpose	Article	Actual Expenditures for period ending 12/31/2023	Appropriations Approved by DRA for period ending 12/31/2023	Proposed Budget for period ending 12/31/2024
General Gove	ernment				
4110	County Convention Costs	2024 Budget	\$5,355	\$9,800	\$9,800
4120	Judicial		\$0	\$0	\$0
4122	Jury Costs		\$0	\$0	\$0
4123	County Attorney's Office	2024 Budget	\$3,086,764	\$4,094,608	\$4,512,619
4124	Victim Witness Advocacy Program		\$98,044	\$120,244	\$0
4130	Executive	2024 Budget	\$1,025,848	\$1,327,311	\$1,510,101
4150	Financial Administration	2024 Budget	\$1,565,814	\$2,033,101	\$2,258,396
4151	Treasurer		\$0	\$0	\$0
4153	Other Legal Costs		\$0	\$0	\$0
4155	Personnel Administration	2024 Budget	\$434,248	\$787,022	\$581,494
4191	Planning and Zoning (Unincorp. Places)		\$0	\$0	\$0
4192	Medical Examiner	2024 Budget	\$43,748	\$50,000	\$50,000
4193	Register of Deeds	2024 Budget	\$551,910	\$722,841	\$758,617
4194	Maintenance of Government Buildings	2024 Budget	\$2,889,291	\$4,023,670	\$3,954,765
4196	Insurance Not Otherwise Allocated	2024 Budget	\$193,590	\$193,590	\$210,118
4198	Contingency	2024 Budget	\$0	\$50,000	\$50,000
4199	Other General Government	2024 Budget	\$6,520,637	\$7,494,763	\$25,000
	General Government Subtotal		\$16,415,249	\$20,906,950	\$13,920,910
Public Safet	y & Corrections				
4211	Sheriff's Department	2024 Budget	\$2,017,631	\$2,639,343	\$2,745,692
4212	Custody of Prisoners	2024 Budget	\$743,517	\$986,867	\$1,181,483
4214	Sheriff's Support Services	2024 Budget	\$799,237	\$1,034,648	\$1,256,764
4219	Other Public Safety		\$58,273	\$117,361	\$0
4230	Corrections	2024 Budget	\$11,521,531	\$15,707,096	\$15,878,108
4235	Adult Probation and Parole	2024 Budget	\$853,628	\$1,201,308	\$1,217,447
	Public Safety & Corrections Subtotal		\$15,993,817	\$21,686,623	\$22,279,494

2024 MS-46

Appropriations

Account	Purpose	Article	Actual Expenditures for period ending 12/31/2023	Appropriations Approved by DRA for period ending 12/31/2023	Proposed Budget for period ending 12/31/2024
County Farm					
4301	Administration		\$0	\$0	\$0
4302	Operating Expenditures		\$0	\$0	\$0
4309	Other County Farm		\$0	\$0	\$0
	County Farm Subtotal		\$0	\$0	\$0
County Nursi	ng Home				
4411	Administration	2024 Budget	\$4,521,814	\$ 5,72 8,533	\$5,929,042
4412	Operating Expense	2024 Budget	\$26,080, 589	\$2 <mark>9,2</mark> 30,098	\$35,136,173
4439	Other Health	2024 Budget	\$14,255,432	\$1 7,25 0,311	\$17,781,043
	County Nursing Home Subtotal		\$44,857,835	\$52,208,942	\$58,84 6,258
Human Servic	85				
4441	Administration	2024 Budget	\$746,881	\$ 1,20 5,170	\$1,255,698
4442	Direct Assistance		\$0	\$0	\$0
4443	Board and Care of Children		\$0	\$0	\$0
4447	Special Outside Services	2024 Budget	\$177,581	\$398,166	\$248,000
4449	Other Human Services		\$544,1 94	\$70 5,807	\$0
	Human Services Subtotal		\$1,468,656	\$2,309,14 3	\$1,503, 698
Cooperative E	xtension Services				
4611	Administration	2024 Budget	\$373,705	\$448,070	\$459,271
4619	Other Conservation	2024 Budget	\$54,710	\$5 4,710	\$59,700
	Cooperative Extension Services Subtotal		\$428,415	\$502,78 0	\$518,971
Economic Dev	elopment				
4651	Administration		\$0	\$0	\$0
4652	Economic Development		\$0	\$0	\$0
4659	Other Economic Development		\$0	\$0	\$0
	Economic Development Subtotal		\$0	\$0	\$0

2024 MS-46

Appropriations

	Abbiobus	ations			
Account Debt Service	Purpose	Article	Actual Expenditures for period ending 12/31/2023	Appropriations Approved by DRA for period ending 12/31/2023	Proposed Budget for period ending 12/31/2024
4711	Principal - Long Term Bonds, Notes, and Other Debt	2024 Budget	\$1,880,000	\$3,630,000	\$3,325,000
4721	Interest - Long Term Bonds, Notes, and Other Debt	2024 Budget	\$999,698	\$1,087,448	\$936,348
4723	Interest on Tax and Revenue Anticipation Notes	2024 Budget	\$237,813	\$250,000	\$675,000
4750	Fiscal Agents' Fees		\$0	\$0	\$0
4760	Bond Issuance Costs		\$0	\$0	\$0
4790	Other Debt Service Charges		\$0	\$0	\$0
	Debt Service Subtotal		\$3,117,511	\$4,967,448	\$4,936,348
intergovernm	ental Transfers				
4800	Intergovernmental Transfers		\$552,443	\$1	\$0
	Intergovernmental Transfers Subtotal	I	\$552,443	\$1	\$0
Capital Outla			Ť.	<u>م</u>	\$0
4901	Land and Improvements	2024	\$0	\$0	\$U
4902	Machinery, Vehicles, and Equipment	2024 Budget	\$238,319	\$179,083	\$86,718
4903	Buildings		\$37,659	\$0	\$0
4904	Improvements other than Buildings		\$0	\$0	\$0
	Capital Outlay Subtota	1	\$275,978	\$179,083	\$86,718
Depreciation	Expense				
4905	Depreciation		\$0	\$0	\$0
4906	Amortization		\$0	\$0	\$0
	Depreciation Expense Subtota	1	\$0	\$0	\$0
Interfund On	erating Transfers				
4911	Transfers to General Fund		\$0	\$0	\$0
4912	Transfers to Special Revenue Fund		\$0	\$0	
4912	Transfers to Capital Projects Fund		\$0	÷- \$0	•
4913	Transfers to Proprietary Fund		\$0	\$0	
	Transfers to Capital Reserve Fund	2024	\$0	\$300,993	
4915	•	Budget	\$0	\$000,000	
4916	Transfers to Trust and Fiduciary Funds	.1	\$0 \$0	\$300,993	
	Interfund Operating Transfers Subtota		φu	4000,880	\$300,000
	Total Appropriation	5	\$83,109,904	\$103,061,963	\$102,592,397

2024 **MS-46**

Revenues

Account	Source	Article	Actual Revenues for period ending 12/31/2023	Estimated Revenues for period ending 12/31/2023	Estimated Revenues for period ending 12/31/2024
Assessme		741010	12,0112020		
3110	Property Taxes (Unincorp. Places)		\$47,275,835	\$0	\$0
3111	Municipal Assessment		\$0	\$0	\$0
3120	Land Use Change Taxes (Unincorp. Places)		\$0	\$0	\$0
3180	Resident Taxes (Unincorp. Places)		\$0	\$0	\$0
3185	Yield Taxes (Unincorp. Places)		\$0	\$0	\$0
3186	Payment in Lieu of Taxes (Unincorp. Places)		\$0	\$0	\$0
3187	Payment in Lieu of Taxes		\$0	\$0	\$0
3189	Other Taxes		\$0	\$0	\$0
3190	Interest and Penalties on Delinquent Taxes (Uninco		\$0	\$0	\$0
3191	Penalties on Delinquent Municipal Assessments		\$0	\$0	\$0
3200	Licenses, Permits, and Fees		\$0	\$0	\$0
	Assessments/Taxes Subtotal		\$47,275,835	\$0	\$0
Licenses, I	Permits, and Fees				
3220	Motor Vehicle Fees (Unincorp. Places)		\$0	\$0	\$0
3230	Building Permits (Unincorp. Places)		\$0	\$0	\$0
3290	Other Licenses, Permits, and Fees		\$0	\$0	\$0
	Licenses, Permits, and Fees Subtotal		\$0	\$0	\$0
From the F	ederal Government				
3319	Federal Grants and Reimbursements		\$5, 794,22 1	\$8,156,469	\$0
	From the Federal Government Subtotal		\$5,794,221	\$8,156,469	\$0
From the S	tate of New Hampshire				
3351	Shared Revenue - Block Grant (Unincorp. Places)		\$0	\$0	\$0
3352	Incentive Funds		\$0	\$0	\$0
3354	Water Pollution Grants	2024 Budget	\$0	\$7,830	\$7,491
3355	Housing and Community Development		\$550 ,54 4	\$1	\$0
3356	State/Federal Forest Land Reimbursements (Unincorp		\$0	\$0	\$0
3359	Other State Grants and Reimbursements	2024 Budget	\$1,870,959	\$904,000	\$200,000
	From the State of New Hampshire Subtotal		\$2,421 ,50 3	\$911,831	\$207, 491
Revenue fr	om Other Governments				
3379	Intergovernmental Revenues - Other		\$0	\$0	\$0
	Revenue from Other Governments Subtotal		\$0	\$0	\$0

2024 MS-46

Revenues					
			Actual Revenues for period ending	Estimated Revenues for period ending	Estimated Revenues for period ending
Account	Source	Article	12/31/2023	12/31/2023	12/31/2024
Charges fo	or Services				
3401	Sheriff's Department	2024 Budget	\$1,287,981	\$1,289,437	\$1,578,348
3402	Register of Deeds	2024 Budget	\$1,048,220	\$1,545,500	\$1,545,500
3403	County Corrections	2024 Budget	\$931,939	\$1,800,000	\$1,483,000
3404	County Nursing Homes	2024 Budget	\$26,674,438	\$34,103,031	\$38,891,116
3405	County Farm		\$0	\$0	\$0
3406	Cooperative Extension Service	2024 Budget	\$33,456	\$44,608	\$45,724
3407	Maintenance Department	2024 Budget	\$70,649	\$111,097	\$99,923
3409	Other Charges	2024 Budget	\$1,066,815	\$1,267,495	\$1,605,069
	Charges for Services Subtotal		\$31,113,498	\$40,161,168	\$45,248,680
Miscellane	eous Sources				
3501	Sale of County Property		\$0	\$0	\$0
3502	Interest on Investments	2024 Budget	\$660,598	\$250,000	\$628,563
3503	Rents of Property		\$0	\$0	\$0
3504	Fines and Forfeits		\$0	\$0	\$0
3505	Escheats	2024 Budget	\$44,228	\$250,000	\$45,000
3506	Insurance Dividends and Reimbursements		\$0	\$0	\$0
3508	Contributions and Donations	2024 Budget	\$13,040	\$14,000	\$14,000
3509	Other Miscellaneous Sources	2024 Budget	\$475,974	\$30,000	\$380,000
	Miscellaneous Sources Subtotal		\$1,193,840	\$544,000	\$1,067,563
Other Fina	ancial Sources				
3911	Transfers from General Fund		\$0	\$0	\$0
3912	Transfers from Special Revenue Fund		\$0	\$0	\$0
3913	Transfers from Capital Projects Fund		\$0	\$0	\$0
3915	Transfers from Capital Reserve Fund	2024 Budget	\$0	\$514,083	\$311,718
3916	Transfers from Trust and Fiduciary Funds		\$0	\$0	\$0
3934	Proceeds from Long-Term Bonds/Notes		\$0	\$0	\$0
9999	Fund Balance to Reduce Taxes	2024 Budget	\$0	\$0	\$4,226,285
	Other Financial Sources Subtotal		\$0	\$514,083	\$4,538,003
	Total Estimated Revenues and Credits		\$87,798,897	\$50,287,551	\$51,061,737

Budget Summary

ltem

Period ending 12/31/2024

Page 6 of 7

2024 **MS-46**

Revenues

Total Proposed Appropriations	\$1 02,592, 39 7
(Less) Total Estimated Revenues & Credits	\$ 51,061, 7 37
Estimated Amount of Taxes to be Raised	\$51,530,660

COUNTY OF MERRIMACK 333 DANIEL WEBSTER HIGHWAY, SUITE 2 BOSCAWEN, NEW HAMPSHIRE 03303-2415 (603) 796-6800 FAX: (603) 796-6840 www.merrimackcounty.net

COMMISSIONERS

COUNTY ADMINISTRATOR ROSS L. CUNNINGHAM

TARA REARDON, Chair, Concord STUART D. TRACHY, Vice Chair, Franklin DAVID M. LOVLIEN JR., Clerk, Pembroke

November 16, 2023

PUBLIC NOTICE

MERRIMACK COUNTY DELEGATION

<u>Pursuant to RSA 24:23</u>, there will be a Public Hearing for Merrimack County before the County Delegation at 10:00 a.m. on <u>Friday, December 8, 2023</u> at the Old Courthouse, 2nd floor conference room, 163 North Main Street, Concord, New Hampshire.

The purpose of the meeting is as follows:

1. Presentation of the Commissioners Proposed 2024 Budget.

2. To consider any other business that may appropriately come before them.

At this time, any member of the public may present oral or written testimony regarding the 2024 budget estimates as proposed by the Merrimack County Board of Commissioners.

<u>Pursuant to RSA 24:9-a</u>, there will be a meeting for Merrimack County before the County Delegation immediately following the public hearing at 10:00 a.m. on <u>Friday, December 8, 2023</u> at the Old Courthouse, 2nd floor conference room, 163 North Main Street, Concord, New Hampshire

The purpose of the meeting is as follows:

- 1. Presentation of the Commissioners proposed 2024 budget.
- 2. Resolution to authorize continuation of county expenditures.
- 3. To consider any other business that may appropriately come before them.

Rep. Dianne Schuett, Chair Merrimack County Delegation

Please be advised that these meetings are recorded for documentation purposes.

Special accomodations for individuals with a disability are available upon request (Americans with Disabilities Act of 1990).

COUNTY OF MERRIMACK 333 DANIEL WEBSTER HIGHWAY, SUITE 2 BOSCAWEN, NEW HAMPSHIRE 03303-2415 (603) 796-6800 FAX: (603) 796-6840 www.merrimackcounty.net

COMMISSIONERS

COUNTY ADMINISTRATOR ROSS L. CUNNINGHAM

TARA REARDON, Chair, Concord STUART D. TRACHY, Vice Chair, Franklin DAVID M. LOVLIEN JR., Clerk, Pembroke

November 16, 2023

PUBLIC NOTICE

MERRIMACK COUNTY DELEGATION

EXECUTIVE COMMITTEE

There will be a meeting of the Merrimack County Executive Committee immediately following the 10:00 a.m. Public Hearing and Merrimack County Delegation meetings on <u>Friday</u>, <u>December 8, 2023</u> at the Old Courthouse, 2nd floor conference room, 163 North Main Street, Concord, New Hampshire.

The purpose of the meeting is as follows:

1. Authorize tax anticipation borrowing for 2024.

2. Any other Business.

Rep. James MacKay, Chairman Rep. Michael Moffett, Clerk Merrimack County Executive Committee

Please be advised that these meetings are recorded for documentation purposes.

Special accommodations for individuals with a disability are available upon request (Americans with Disabilities Act of 1990).

